

Master² 2020/202

PENLAI Joseph

Quelques résultats mathématique

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le c$

résolution d'une EDP

Conclusion e perspectives

Bibliographi

Département de Mathématiques et Informatique

LES ESPACES DE FONCTIONS LOCALEMENT UNIFORMÉMENT BORNÉS ET APPLICATION

Par:

PENLAP TAMAGOUA Joseph Junior

Matricule: CM-UDS-16SCI0795 Sous la direction de:

Prof. Jean Louis WOUKENG

Maître de Conférences, Université de Dschang

November 27, 2021

Soutenance Master2 2020/2021

> PENLAF Joseph

Quelques résultats mathématiques

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le c$

Application à la résolution d'und EDP

Conclusion et perspectives

Bibliogra

Contexte

L'amalgame de L^p et ℓ^q , $(1 \le p \le q \le +\infty)$ a été introduit pour la première fois en 1926 par Nobert Wiener. La première étude systématique de ces espaces a été faite en 1975 par Finbaar Holland.

Plusieurs définitions de ces espaces sont apparues à la suite de recherches menées dans différents domaines.

Maria Torres Desquire dans [2] a fait mention de ces définitions par ordre chronologique de publication et en a établi leur équivalence.

Le but consiste à reprendre les travaux éffectués dans [2] et se restreindre à un cas particulier de ces espaces : $L^p_{uloc}(\mathbb{R}^d)$.

Master2 2020/2021

Joseph

résultats mathématique

Les espaces $L_{uloc}^{p}(\mathbb{R}^{d})$, $(1 \leq p \leq \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliographi

Motivation

L'étude de ces espaces est motivée par la résolution de problèmes correcteurs en théorie de l'homogénéisation.

Domaines d'applications

La théorie de l'homogénéisation, analyse harmonique.

Soutenance Master2 2020/2021

> PENLAF Joseph

Quelques résultats mathématique

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le c$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

Objectifs

L'objectif de ce travail est l'étude des espaces de fonctions localement uniformément bornés et application des résultats de cette étude à la recherche des solutions localement uniformément bornées d'une équation aux dérivées partielles linéaire du second ordre sous forme divergence dans l'espace de type Sobolev $W^{1,2}_{uloc}(\mathbb{R}^d)$.

Master2 2020/2021

> PENLAF Joseph

résultats mathématique

Les espaces $L_{uloc}^{p}(\mathbb{R}^{d})$, $(1 \leq p \leq c)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograph

Plan

- Quelques résultats mathématiques
- ② Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le \infty)$
- Application à la résolution d'une EDP linéaire du second ordre
- Conclusion et perspectives

Soutenance Master2 2020/2021

PENLAI Joseph

Quelques résultats mathématiques

Les espaces $L_{uloc}^{p}(\mathbb{R}^{d})$, $(1 \leq p \leq c)$

Application à la résolution d'un EDP

perspectiv

Bibliograph

Définition

On dit que la suite $(x_n) \subset X$ converge faiblement vers $x \in X$ si et seulement si

$$\langle x', x_n \rangle \longrightarrow \langle x', x \rangle, \quad \forall \, x' \in X'.$$
 (1)

Théorème

Soit $(x_n) \subset X$ une suite d'éléments qui converge faiblement vers x dans X. Alors (x_n) est bornée dans X. De plus, on a

$$\forall n \in \mathbb{N}, \ \|x\|_X \le \lim_{n \to \infty} \inf \|x_n\|_X. \tag{2}$$

Soutenanc Master2 2020/2021

Joseph

Quelques résultats mathématiques

Les espaces $L_{uloc}^{p}(\mathbb{R}^{d})$, $(1 \leq p \leq \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

Les espaces $L^P(\mathbb{R}^d)$

On désigne par $L^p(\mathbb{R}^d)$, $(1 \le p < \infty)$, l'espace des (classes de) fonctions $f: \mathbb{R}^d \to \mathbb{R}$ mesurables telles que

$$\int_{\mathbb{R}^d} |f(x)|^p \ dx < +\infty,\tag{3}$$

que l'on munit de la norme

$$||f||_{L^p(\mathbb{R}^d)} = \left(\int_{\mathbb{R}^d} |f(x)|^p dx\right)^{\frac{1}{p}}.$$
 (4)

Master2 2020/2021

Joseph

Quelques résultats mathématiques

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograph

Propriétés

Les espaces $L^p(\mathbb{R}^d)$ satisfont les propriétés suivantes :

- **①** Pour $1 \le p < \infty$, l'espace $L^p(\mathbb{R}^d)$ est séparable,
- ② Pour $1 , l'espace <math>L^p(\mathbb{R}^d)$ est réflexif,
- Solution 1 p</sup>(ℝ^d) s'identifie à L^{p'}(ℝ^d) où $\frac{1}{p} + \frac{1}{p'} = 1$.

Master2 2020/2021

PENLAI Joseph

Quelques résultats mathématiques

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

Représentation de Riesz

Soient Ω un ouvert de \mathbb{R}^d , $\varphi \in (L^p(\Omega))'$, $(1 . Alors, il existe une fonction <math>u \in L^{p'}(\Omega)$ unique telle que

$$\forall f \in L^p(\Omega), \ \langle \varphi, f \rangle = \int_{\Omega} u f(x) \ dx, \tag{5}$$

De plus, on a

$$\|u\|_{L^{p'}(\Omega)} = \|\varphi\|_{(L^p(\Omega))'}$$
 (6)

Master2 2020/2021

PENLAP Joseph

Quelques résultats mathématique

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

Définition et notations

Soit $f \in L_0(\mathbb{R}^d)$. Pour r > 0 et $p \ge 1$ fixés, on pose

$$_{r}\left|\left|f\right|\right|_{p,\infty}=\sup_{x\in\mathbb{R}^{d}}\left\|f\chi_{I_{x}^{r}}\right\|_{p}.\tag{7}$$

Alors

$$L_{uloc}^{p}\left(\mathbb{R}^{d}\right) = \left\{ f \in L_{0}(\mathbb{R}^{d}), \ ||f||_{p,\infty} < +\infty \right\}. \tag{8}$$

Feuto Justin dans [1] a établi l'équivalence entre les normes $r ||.||_{p,\infty}, ||.||_{p,\infty}$ et $||.||_{p,\infty}$ où π est une partition de \mathbb{R}^d .

Soutenanc Master2 2020/2021

PENLAF Joseph

Quelques résultats mathématique

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

Muni de la norme $_r ||.||_{p,\infty}, L^p_{uloc}(\mathbb{R}^d)$ est un espace de Banach.

Relations d'inclusions et d'inégalités

Soient $1 \le p_1, p_2, r \le \infty$. Si $p_1 < p_2$, alors

$$L^{p_2}_{uloc}(\mathbb{R}^d) \subset L^{p_1}_{uloc}(\mathbb{R}^d). \tag{9}$$

Par conséquent,

$$|f|_{p_1,\infty} \le r^{d(\frac{1}{p_2} - \frac{1}{p_1})} |f|_{p_2,\infty}, \text{ pour tout } f \in L_0(\mathbb{R}^d).$$
 (10)

Soutenance Master2 2020/2021

PENLAI Joseph

Quelques résultats mathématique

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le \infty)$

Application à la résolution d'une EDP

Conclusion e perspectives

Bibliogra_l

Théorème

Soient $1 \le p, p_1, p_2 \le \infty$ tels que $\frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p} \le 1$. Alors

$$|f|_{p,\infty} \le |f|_{p_1,\infty} |f|_{p_1,\infty} |f|_{p_2,\infty}, \text{ pour tout } f,g \in L_0(\mathbb{R}^d).$$
 (11)

Idée de la preuve

On utilise l'inégalité de Hölder classique dans l'espace de Lebesgue ${\cal L}^p$ pour écrire :

$$r ||fg\chi_{I_{x}^{r}}||_{p} \leq r ||f\chi_{I_{x}^{r}}||_{p_{1}} r ||g\chi_{I_{x}^{r}}||_{p_{2}}.$$
 (12)

Par suite, en prenant $\sup_{x \in \mathbb{R}^d}$ membre à membre, on a le résultat.

Soutenanc Master2 2020/2021

PENLAF Joseph

Quelques résultats mathématique

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

Remarque

L'espace $(L^{\infty}, \ell^1)(\mathbb{R}^d)$ est le plus petit et $L^1_{uloc}(\mathbb{R}^d)$ est le plus grand des espaces amalgames.

Sous-espace fonctionnel

Soit $1 \le p \le \alpha \le \infty$. Posons

$$||f||_{p,\infty,\alpha} = \sup_{r>0} r^{d\left(\frac{1}{\alpha} - \frac{1}{p}\right)} r ||f||_{p,\infty}, \quad f \in L_0(\mathbb{R}^d).$$
 (13)

On définit

$$\left(L_{uloc}^{p}\right)^{\alpha}(\mathbb{R}^{d}) = \left\{ f \in L_{0}(\mathbb{R}^{d}) / \|f\|_{p,\infty,\alpha} < +\infty \right\}. \tag{14}$$

Soutenance Master2 2020/2021

PENLAF Joseph

Quelques résultats mathématiques

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

Propriétés

Soit $1 \le p \le \alpha \le \infty$.

- $\bullet \ (L^p_{uloc})^{\alpha}(\mathbb{R}^d) \text{ est un sous-espace vectoriel de } L^p_{uloc}(\mathbb{R}^d).$
- ② Muni de (13), $(L^p_{uloc})^{\alpha}(\mathbb{R}^d)$ est un espace de Banach.
- $(L_{uloc}^{p_2})^{\alpha}(\mathbb{R}^d) \subset (L_{uloc}^{p_1})^{\alpha}(\mathbb{R}^d), \ \forall 1 \leq p_1 \leq p_2 \leq \alpha \leq \infty.$
- $(L^1_{uloc})^{\alpha}(\mathbb{R}^d)$ est l'espace de Morrey.
- $\bullet L^{\alpha}(\mathbb{R}^d) \subset (L^{p_2}_{uloc})^{\alpha}(\mathbb{R}^d) \subset (L^{p_1}_{uloc})^{\alpha}(\mathbb{R}^d) \subset (L^1_{uloc})^{\alpha}(\mathbb{R}^d).$

Master2

PENLAF Joseph

Quelques résultats mathématique

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le \infty)$

Application à la résolution d'une EDP

Conclusion el perspectives

Bibliograp

Espace de Sobolev associé

Soit $1 \le p < \infty$. On définit

$$W_{uloc}^{1,p}(\mathbb{R}^d) = \left\{ u \in L_{uloc}^p(\mathbb{R}^d / \frac{\partial u}{\partial y_i} \in L_{uloc}^p(\mathbb{R}^d, 1 \le i \le d) \right\}.$$
(15)

Muni de la norme

$$||u||_{W^{1,p}_{uloc}(\mathbb{R}^d)} = \left(||u||_{L^p_{uloc}(\mathbb{R}^d)}^p + ||\partial u||_{L^p_{uloc}(\mathbb{R}^d)}^p\right)^{\frac{1}{p}}.$$
 (16)

Master2 2020/2021

PENLAF Joseph

Quelques résultats mathématique

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

Propriétés

- Muni de (16), $W_{uloc}^{1,p}(\mathbb{R}^d)$ est un espace de Banach.
- ② L'espace $W_{uloc}^{1,p}(\mathbb{R}^d)$ est réflexif pour 1 .
- **⑤** L'espace $W_{uloc}^{1,p}(\mathbb{R}^d)$ est séparable pour $1 \le p < \infty$.
- Pour p=2, $W^{1,2}_{uloc}(\mathbb{R}^d)=H^1_{uloc}(\mathbb{R}^d)$, la norme associée étant

$$||u||_{H^{1}_{uloc}(\mathbb{R}^{d})} = \left(||u||_{L^{2}_{uloc}(\mathbb{R}^{d})}^{2} + ||\nabla u||_{L^{2}_{uloc}(\mathbb{R}^{d})}^{2}\right)^{\frac{1}{2}}.$$
 (17)

Master2

PENLAI Joseph

Quelques résultats mathématique

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le c$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

Présentation du problème

Considérons l'EDP linéaire du second ordre suivante

$$-\operatorname{div}(A\nabla u) + u = f + \operatorname{div}F \quad \text{dans } \mathbb{R}^d$$
 (18)

Où

$$\begin{cases} f \in L^{2}_{uloc}(\mathbb{R}^{d}), F \in L^{2}_{uloc}(\mathbb{R}^{d})^{d} & \text{et } A \in L^{\infty}(\mathbb{R}^{d})^{d \times d} \\ \alpha \left| \lambda \right|^{2} \leq A(x)\lambda.\lambda \leq \beta \left| \lambda \right|^{2}. \end{cases}$$
(19)

Master2 2020/2021

PENLAP Joseph

résultats mathématique

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

Inégalité de Caccioppoli

Soit u solution de (18). Alors il existe une constante

$$C = C(d, \alpha, \beta) > 0$$
 telle que

$$\sup_{x \in \mathbb{R}^d} \int_{B_r(x)} \left(|\nabla u|^2 + |u|^2 \right) \le C + C \sup_{x \in \mathbb{R}^d} \int_{B_r(x)} \left(|f|^2 + |F|^2 \right). \tag{20}$$

Master2 2020/2021

PENLAI Joseph

Quelques résultats mathématique

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

Résultat d'existence et d'unicité

Soit $f \in L^2_{uloc}(\mathbb{R}^d)$ et $F \in L^2_{uloc}(\mathbb{R}^d)^d$. Il existe une unique fonction $u \in W^{1,2}_{uloc}(\mathbb{R}^d)$ solution de (18). De plus u vérifie

$$\sup_{z \in \mathbb{R}^d} \int_{B_r(z)} \left(|\nabla u|^2 + |u|^2 \right) \le C \sup_{z \in \mathbb{R}^d} \int_{B_r(z)} \left(|f|^2 + |F|^2 \right). \tag{21}$$

Où $C = C(r, d, \alpha, \beta) > 0$ et $B_r(z) = B(z, r)$ désigne la boule ouverte centrée en z de rayon r.

Master2 2020/2021

PENLAP Joseph

Quelques résultats mathématique

Les espaces $L_{uloc}^{p}(\mathbb{R}^{d})$, $(1 \leq p \leq \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliogra

Idée de la preuve

Elle se fait en deux étapes : existence et unicité de la solution.

Preuve de l'existence

Formulation variationnelle de (18)

$$\int_{B_r} \eta_z^2 A \nabla u_r \cdot \nabla u_r + \int_{B_r} \eta_z^2 u_r^2 = -2 \int_{B_r} \eta_z u_r A \nabla u_r \cdot \nabla \eta_z
-2 \int_{B_r} \eta_z u_r H \cdot \nabla \eta_z - \int_{B_r} \eta_z^2 H \cdot \nabla u_r + \int_{B_r} h \eta_z^2 u_r
= I_1 + I_2 + I_3 + I_4.$$
(22)

Soutenance Master2 2020/2021

Joseph

Quelques résultats mathématiques

Les espaces $L_{uloc}^{p}(\mathbb{R}^{d})$, $(1 \le p \le \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliographie

En utilisant l'inégalité de Young et les propriétés de la matrice A, on a les estimations suivantes

$$\alpha \int_{B_r} \eta_z^2 |\nabla v_r|^2 + \int_{B_r} \eta_z^2 v_r^2$$
 (23)

$$|I_1| \le \frac{\alpha\beta}{k} \int_{B_r} v_r^2 |\nabla \eta_z|^2 + \frac{\beta k}{\alpha} \int_{B_r} v_r \eta_z^2 |\nabla v_r|^2, \qquad (24)$$

$$|I_2| \le \frac{\alpha\beta}{k} \int_{B_r} v_r^2 |\nabla \eta_z|^2 + \frac{k}{\alpha\beta} \int_{B_r} \eta_z^2 |F|^2$$
 (25)

$$|I_3| \le \frac{\beta k}{\alpha} \int_{B_r} \eta_z^2 |\nabla v_r|^2 + \frac{\alpha}{4k\beta} \int_{B_r} \eta_z^2 |F|^2 \tag{26}$$

$$|I_4| \le \frac{\alpha \beta c^2}{k} \int_{B_r} v_r^2 \eta_z^2 + \frac{k}{4\alpha \beta c^2} \int_{B_r} \eta_z^2 |f|^2.$$
 (27)

MASTER II en Mathématiques UDs 2021

Master2 2020/2021

PENLAP Joseph

Quelques résultats mathématique

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliogra

Notons que $|\nabla \eta_z| = c\eta_z$. En prenant $k = \frac{\alpha^2}{4\beta}$ et $c = \frac{1}{2\beta} \left(\frac{\alpha}{6}\right)^{\frac{1}{2}}$, nous avons l'estimation suivante

$$\alpha \int_{B_r} \eta_z^2 |\nabla u_r|^2 + \int_{B_r} \eta_z^2 u_r^2 \le \int_{B_r} \left[\frac{3}{2} |f|^2 + \left(\frac{\alpha}{4\beta^2} + \frac{1}{\alpha} \right) |F|^2 \right] \eta_z^2. \tag{28}$$

De (28)

$$\exists (u_r)_{r>0} / u_r \to u \quad \text{dans} \ W_{loc}^{1,2}(\mathbb{R}^d) - \text{faible}. \tag{29}$$

Master2 2020/2021

PENLAP Joseph

Quelques résultats mathématique

Les espaces $L_{uloc}^{p}(\mathbb{R}^{d})$, $(1 \leq p \leq \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograpl

Passage à la limite

Remarquons que u est une solution faible de (18). En prenant la $\lim_{r\to\infty}$ inf dans (28), on obtient

$$\alpha \int_{\mathbb{R}^d} \eta_z^2 |\nabla u_r|^2 + \int_{\mathbb{R}^d} \eta_z^2 u_r^2 \le \int_{\mathbb{R}^d} \left[\frac{3}{2} |f|^2 + \left(\frac{\alpha}{4\beta} + \frac{1}{\alpha} |F|^2 \right) \right] \eta_z^2$$
(30)

Ainsi, nous déduisons de (30) que

$$\sup_{z \in \mathbb{R}^d} \int_{B_r(z)} \left(|\nabla v|^2 + |v|^2 \right) \le C_1 \tag{31}$$

Où
$$C_1 = \left(\frac{\alpha}{4\beta^2} + \frac{1}{\alpha}\right) \|F\|_{L^2_{uloc}}^2 + \frac{3}{2} \|f\|_{L^2_{uloc}}^2$$

Master2 2020/2021

Joseph

résultats mathématiques

Les espaces $L_{uloc}^{p}(\mathbb{R}^{d})$, $(1 \leq p \leq \circ)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

En vertu de l'inégalité de Caccioppoli nous avons

$$\int_{B_{r}(z)} |\nabla u|^{2} + \int_{B_{r}(z)} |u|^{2} \leq C \left\{ \int_{B_{r}(z)} |f|^{2} + \int_{B_{r}(z)} |F|^{2} \right\} + \frac{C}{r^{2}} \int_{B_{2r}(z)} |\nabla u|^{2}.$$
(32)

Où $C = C(d, \alpha, \beta) > 0$. Par suite, on a bien

$$\sup_{x \in \mathbb{R}^d} \int_{B_{2r}} |u|^2 \le C_d \sup_{x \in \mathbb{R}^d} \int_{B_r} |u|^2.$$
 (33)

Master2 2020/2021

PENLAF Joseph

Quelques résultats mathématique

Les espaces $L_{uloc}^{p}(\mathbb{R}^{d})$, $(1 \leq p \leq \infty)$

Application à la résolution d'une EDP

Conclusion e perspectives

Bibliograp

De (33), on a bien

$$\sup_{x \in \mathbb{R}^d} \int_{B_r} |\nabla u|^2 + \sup_{x \in \mathbb{R}^d} \int_{B_r} |u|^2 \le C \left\{ \sup_{x \in \mathbb{R}^d} \int_{B_r} (|f|^2 + |F|^2) \right\}$$

$$C r^{-2} \sup_{x \in \mathbb{R}^d} \int_{B_r} |u|^2 \le C \left\{ \sup_{x \in \mathbb{R}^d} \int_{B_r} (|f|^2 + |F|^2) \right\}$$

$$C r^{-2} \sup_{x \in \mathbb{R}^d} \int_{B_r} |u|^2.$$

(34)

En définitif, si $r \ge 2C$, alors on a (21).

Master2 2020/2021

PENLAF Joseph

Quelques résultats mathématique

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le c)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

Preuve de l'unicité

Prouver l'unicité de la solution revient à considérer (18) avec f = 0 et F = 0. C'est-à-dire

$$-\operatorname{div}(A\nabla u) + u = 0 \quad \operatorname{dans} \mathbb{R}^d \tag{35}$$

D'après l'inégalité de Caccioppoli, on a:

$$\int_{B_r(z)} |\nabla u|^2 + \int_{B_r(z)} |u|^2 \le \frac{C}{r^2} \int_{B_{2r}(z)} |u|^2.$$
 (36)

De (36), on a

$$\int_{B_r(z)} |u|^2 \le \frac{C}{r^2} \int_{B_{2r}(z)} |u|^2. \tag{37}$$

Master2 2020/2021

PENLAF Joseph

Quelques résultats mathématique

Les espaces $L_{uloc}^{p}(\mathbb{R}^{d})$, $(1 \leq p \leq \infty)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliographie

Cependant, en vertu de (33) et (31), (37) devient

$$\int_{B_r(z)} |u|^2 \le C \, r^{-2}, \quad \text{pour } r \ge 1.$$
 (38)

Ainsi en faisant tendre $r \to +\infty$, on obtient u = 0 sur \mathbb{R}^d .

Conclusion et perspectives

Master2 2020/2021

PENLAI Joseph

résultats mathématiques

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le c$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

Conclusion

Nous avons,

- fait une étude systématique des espaces de fonctions localement uniformément bornés,
- Montré que ces espaces contiennent les espaces de Lebesgue,
- **⑤** Énoncé et prouvé le théorème d'existence et d'unicité de la solution localement uniformément bornée.

Perspectives

Nous proposons dans les travaux futurs de résoudre des problèmes d'homogénéisation dans ce type d'espace, tout en proposant un schéma numérique efficient.

Conclusion et perspectives

Soutenanc Master2 2020/202

PENLAI Joseph

résultats mathématique

Les espaces $L^p_{uloc}(\mathbb{R}^d)$, $(1 \le p \le c$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliograp

Conclusion

Nous avons,

- fait une étude systématique des espaces de fonctions localement uniformément bornés,
- Montré que ces espaces contiennent les espaces de Lebesgue,
- **⑤** Énoncé et prouvé le théorème d'existence et d'unicité de la solution localement uniformément bornée.

Perspectives

Nous proposons dans les travaux futurs de résoudre des problèmes d'homogénéisation dans ce type d'espace, tout en proposant un schéma numérique efficient.

Bibliographie

Master2 2020/2021

PENLAF Joseph

Quelques résultats mathématique

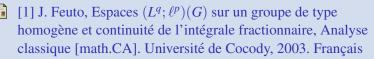
Les espaces $L_{uloc}^{p}(\mathbb{R}^{d})$, $(1 \leq p \leq c)$

Application à la résolution d'une EDP

Conclusion et perspectives

Bibliographie

Bibliographie



- [2] M. L. Torres Desquire, Amalgams of L^p And ℓ^q , Open Dissertations and Theses, 1-60, 1984.
- [3] A. L. Pokam Kakeu, J. L. Woukeng, Homogenization of nonlinear parabolic equations with hysteresis.

 ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 100. 10 (2020): e201900323.

FIN !!!

Soutenance Master2 2020/2021

PENLAP Joseph

Quelques résultats mathématique

Les espaces $L_{uloc}^{p}(\mathbb{R}^{d}),$ $(1 \leq p \leq c)$

Application à la résolution d'une EDP

Conclusion e perspectives

Bibliographie

NOUS VOUS REMERCIONS

POUR VOTRE AIMABLE

ATTENTION