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& Abstract &

In this present work we study a locally uniformly bounded function spaces and an application of the
properties of these spaces to find the solutions locally uniformly bounded by a second order linear
partial differential equation in divergence form in the Sobolev type space le’gc(Rd). The study of
these spaces is motivated by an important step towards the homogenization theory, especially in the
resolution of the corrector problem. In this dissertation, we are inspired by existing works insofar as
we present in a general way Wiener amalgam spaces and we have restricted ourselves to a particular
case of these spaces, that is locally uniformly bounded energy function spaces. Therefore, to solve
our equation, We provide in the sense of the distributions an existence and uniqueness result of the
weak solution by means of the Caccioppoli’s inequality specific to this equation in the Sobolev type

space W2 (R%).

uloc

Key words

Lebesgue spaces, Amalgams spaces, Sobolev spaces, Caccioppoli’s Inequality.
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& Résumé &

Dans ce travail, nous faisons une étude systématique des espaces de fonctions localement unifor-
mément bornées et application des propriétés de ces espaces a la recherche de solutions localement
uniformément bornées d’une équation aux dérivées partielles linéaire du second ordre sous forme
divergence dans I’espace de type Sobolev WJZ’OQC(RCI). L’étude de ces espaces est motivée par la
résolution de problemes correcteurs en théorie de I’homogénéisation. Dans ce travail, nous nous
inspirons des travaux existants dans la mesure ol nous présentons de facon générale les espaces
amalgames de Wiener et nous nous sommes restreint a un cas particulier de ces espaces : celui des
espaces de fonctions a energie localement uniformément bornées. Par suite, dans I’optique de ré-
soudre notre équation, nous établissons au sens des distributions le résultat d’existence et d’unicité

de la solution faible de cette équation moyennant 1’inégalité de Caccioppoli propre a cette équation

dans I’espace de type Sobolev w2 (RY).

uloc

Mots clés:

Espaces de Lebesgue, Espaces amalgames, Espaces de Sobolev, Inégalité de Caccioppoli.
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& Notations &

I ( a positive integer.

I dz denotes the Lebesgue measure on RY. For all elements © = (;)1<;<q €t y = (Y;)1<i<a de

RRY, for each real number r > 0 and all elements p et p’ de [1, +0c], we denote by:

d
I the scalar product of x and y is defined by xy = > z;y;.
i=1

(2

1
d 3
= ||z|| = (Z xg) the Euclidean norm of x,

=1

d
=3 ]£:H($i—§,xi+§),

d
= g =1] [l@ir, (ki + 1)r [ for all k = (k;)1<i<q € Z%. J} form a partition of R?.

=1

p the conjugate exponent of p such that p = 1 with the convention —— = 0.

B f(z) = f(~a).

For any subset E of R?, we denote by:
5"y its characteristic function,
I | B| its Lebesgue measure if E is Lebesgue measurable,

I [ its interior, F its adherence, OF the boundary of E.

For any element X of R%.

I C,(X) the space of continuous functions on X and with compact support,

&

C*°(X) the space of continuous functions on X and indefinitely differentiable on X.

I [,(X) denotes the complex vector space of equivalence classes modulo the equality A-almost

everywhere of complex functions A-mesurable on X,

I K (X) the vector space of continuous complex functions on X with compact support.
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& General introduction &

The amalgam of L? and /¢ on R¢ is a Banach space (L?,19) (R%), (1 < p,q < +0o0) of (classes of)
measurable functions on a locally compact abelian group, consisting of L functions and having [?-
behaviour at infinity. The idea of considering the amalgam (L?, ¢%) (R¢) as opposed to the Lebesgue
space LP(R?) = (LP,¢?) (R?) is natural, in that it allows us to distinguish the global behaviour of a
mesurable function f from its local behaviour. This idea comes from Nobert Wiener who, in 1926,
considered (L', 1?) (R%) and (L?,1°°) (R?) in [22], similarly (L>°,1*) (R%) and (L', () (R?). But
the first systematic study of these spaces was made in 1975 by Finbaar Holland [10] who established
important results in these spaces related to the Fourier transform, several authors have introduced
special cases of amalgam spaces during the last decade. These include N. Wiener, T. S. Liu, A. Van
Rooij and J. K. Wang [[14].

In harmonic analysis, some authors such as: I. Fofana [3]], introduced and studied systematically
the spaces (L?, £9)® (R?) which are subspaces of the amalgam spaces (L?, (¢) (R?). Among other
results he showed that if 1 < p < ¢ < 2, then the space of Fourier multipliers of LP(R¢) in £4(R%)
is contained in (Lp, , KOO) (RY) with % + }% = 1and i = é — %. This result was an improvement of
the classical result stating that any Fourier multiplier of L? in ¢ is of power p’ locally Lebesgue-
integrable. In this work, we define a space that is identifiable with the space defined by R. C. Busby
and H. A. Smith [3]].

The aim of this work is to study the spaces of locally uniformly bounded functions L, (R?)
and then to apply the properties of these spaces to the search for locally uniformly bounded solu-
tions of a linear partial differential equation of the second order in divergence form in the Sobolev-
type space Wi}lﬁc (R%). Our work is structured as follows:

In the first chapter dedicated to some mathematical results, we recall some essential notions of
functional analysis, in particular those relating to the theory of locally compact topological groups
and some properties of Lebesgue spaces LP(R?).

In the second chapter, we make a systematic study of the spaces of locally uniformly bounded

functions L, (R?). Their study is motivated by the solution of the correcting problems in homog-
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Contents

enization. In this section, we give a brief description of the amalgam spaces which are a general-
ization of these spaces, then we present the properties specific to our study space; we can quote
among others Holder’s inequality, Young’s inequality to quote only a few. We then highlight their
relationship and inclusion with other spaces. In the last paragraph, we define the spaces of functions

(LF )*(R%) forms a

uloc

)4(RY), for 1 < p < a < oco. We show that for a < +o0, the family (L

uloc

Banach space chain, the smallest of which is the Lebesgue space L“ (]Rd), and the largest of which

is the classical Morrey space which corresponds here to (L}, .)*(R?). Finally, in the last paragraph,

we introduce the Sobolev type spaces Wil’ic(Rd) with some properties.

In Chapter 3, we exploit the results of the previous study to solve in the sense of distributions a
linear partial differential equation of the second order in divergence form in the Sobolev type space
W2 (R?). The aim of this part is to find solutions of this equation in 1> (R%) associated with

uloc uloc
spaces of functions with locally uniformly bounded energy L?, (R?). To this end, we establish the
existence and uniqueness theorem of the weak solution which is the main result of this thesis by
means of an important mathematical concept: the Caccioppoli inequality specific to our equation
in the proof of the said theorem. This inequality is considered as the reciprocal of the Poincaré in-

equality and is very useful for the study of the regularity of solutions of partial differential equations

in general.
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YR8 Cuaprer ONE S

SOME MATHEMATICAL TOOLS
.

In this chapter, we gather some known notions that will be used throughout this thesis. The first
ones we deal with are related to the theory of locally compact topological groups. Subsequently,
we introduce Lebesgue spaces with some results. The definitions and properties that are presented

can be found in most of the documents in functional analysis, notably [2, [15].

1.1 Recalls on locally compact topological groups

1.1.1 Generalities

Definition 1.1.1. A space X is said to be locally compact if it is separated and if any point x of

X has a compact neighbourhood.

If X is locally compact, so is every open O of X. This is because any open of O is an open of
X; this brings us back to the definition of compactness by open overlays. If X is locally compact,
then so is every closed of X. This is because the intersection of a compact with a closed is still

compact, since it is a closed in a compact.

Proposition 1.1. [|/5)] If X is locally compact and if X,, C X,,—1 C ... C Xo = X is a sequence

of topological spaces such that X; is either closed or open in X;_1, then X,, is locally compact.

Definition 1.1.2. A topological space X is called a Baire space if any countable intersection of

dense openings of X is still dense.
Theorem 1.1. [15] Any locally compact space is a Baire space.

Theorem 1.2. [15] Let X be a topological group and a € X fixed. Then,

1. translations on the left L, : x — ax and on the right R, : * — za are homeomorphisms of

X in X.
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1.2. Complements

2. the application x + 2! and the automorphism z + axa~! are homeomorphisms.

Corollary 1.1. [l15] Let X be a topological group.

(i) For any open (resp closed) part A of X and any point a € X, the sets aA, Aa and A~ are

open (resp closed).
(ii) For any open part O of X and for any part U of X, the sets OU and UQ are open.

Theorem 1.3. [135] For a homomorphism of a topological group X into a topological group X'

to be continuous, it is necessary and sufficient that it is continuous at a point.

Definition 1.1.3. Let E' be a separate topological space. F is said to be homogeneous if for all

elements x,y € FE, there exists a homeomorphism f such that f(z) = y.

Remark 1.1.1. Every topological group is a homogeneous space. Indeed, for all x,y € X, let
a = yx~! be the case. The translation L, is a homeomorphism which applies x to 3. Therefore X

is a homogeneous space.

Theorem 1.4. Let X be a topological group and H a topological subgroup of X. Then X/H is a

homogeneous space.

Definition 1.1.4. A topological group X is locally compact if the underlying space is locally

compact.

1.2 Complements

Definition 1.2.1. An open set Q) of R? is said to be regular of class C* if its O is a regular

hypersurface (variety of dimension d — 1) and if € is located on only one side of its boundary.

We define the external normal to the boundary 0f2 as being the unit vector v = (1;);<;<q4 normal

at any point to the plane tangent to €2 and pointing towards the outside of 2. Next, we will note by :

1
(w)y = / u dy et (u)y, = ][ udr = —/ w dr.
v B(ar) 1B(, )| /B

where U is a bounded and connected open of R? and B(z,r) C R? is the open ball of centre = and

radius .
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1.3. Reflexive spaces

Theorem 1.5. (Green’s formula)
Let Q € R? be a regular open set of class C'; let w be a C*(Q)? function with bounded support in

the closed €, then it verifies the following Green’s formula

/Q div(w)(z) dz = / w(z).v(z) do,

89
where do,, denotes the surface measure on 9¢) and ". "the usual scalar product on R? and div(w) =

Op,w1 + - - - + Oy wa is the divergence of the vector w := (wy, - -+ ,wa).
Let us consider the following formulation of Green’s formula.

Corollary 1.2. (Integration by parts formula)
Let Q € R? be a regular open set of class C'; let u € C*(Q)? and v € C*(Q) have bounded

support in Q, then

/Vv.u dr = —/vdiv(u)dw—l—/ vu.v dog,
Q Q o)

where Vv = (0,01, ..., Oy, Va) Fepresents the gradient of vector v.

Theorem 1.6. (Poincare’s inequality)
Let U C R be a bounded and connected open set with a U of class C''. Suppose that 1 < p < oo.

Then there exists a constant C' depending only on d, p and U such that :

Ju— (u)UHLP(U) <C ”VUHLP(U) )
for any function u € W'?(U).

Theorem 1.7. (Poincaré-Wirtinger inequality)

Let 1 < p < oo. There exists a constant C' depending only on d and p such that

Ju— (u>z,r||LP(B(z,r)) <Cr ||VU’||LP(B(35,7")) ’

for all B(x,r) C R? and any function u € W'?(B(z,r)).

1.3 Reflexive spaces
Let E be a Banach space, E’ its bidual. We define the following application:

J:E — E,

r — J(z).
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1.3. Reflexive spaces

Proposition 1.2. [2|] For all x € E, we have: ||J(2)|| = ||z

|, therefore J is continuous and

injective.
Definition 1.3.1. Let £ be a Banach space. F is reflexive if and only if .J is surjective.

Remark 1.3.1. If F is reflexive, then E = E” and the topologies sigma(E’, E") and sigma(E’, E)

coincide.

Theorem 1.8. (Banach-Alaoglu) [2]

Let E be a Banach space. The closed unit ball of £ denoted B ' 1s compact for the weak topology

b

Theorem 1.9. (Kakutani)([2])
Let E be a Banach space. Then E is reflexive if and only if the closed unit ball By is compact for

the weak topology o(E, E').

Lemma 1.1. Let E be a Banach space, fi1, ..., fo € E and alpha, ..., a, € R fixed. The follow-
ing properties are equivalent:

1. Ye > 0,3z, € Etel que ||z || < Let|(fi,x;) — | <eVi=1,..n.

2.

S 7v617"'76n eR.

d d
; Bio; ; Bi fi

Lemma 1.2. Let E be a Banach space. Then .J(Bg) is dense in By for the topology o(E™ | E').
Theorem 1.10. [2] Let £ be a Banach. F is reflexive if and only if E' is reflexive.

Proposition 1.3. /2] Let E be a Banach space. If E' is separable then so is E.

Proposition 1.4. (Convergence of sequences)

e Let E ba a separable space, and (¢, )nen a sequence of E'. If (py,) is bounded in E', then
there exists (p,,, ) and a sub-sequence (py,) of (¢n, ) such that (¢,,) — ¢ for sigma(E', E).

o Let E be a reflexive space, and (x,,),, a sequence of E. If (x,,), is bounded, then there exists

an extracted subsequence ., of (x,), such that r,,, — x for the topology o(E, E').
Corollary 1.3. E is reflexive and separable if and only if E' is.

Theorem 1.11. Let £ be a Banach space. £ is reflexive if and only if any bounded sequence

(Zn )nen of E admits a sub-sequence which converges weakly
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1.3. Reflexive spaces

Definition 1.3.2. Let I be a Banach space. The space F is said to be uniformly convex if and
only if

<1-04.

1
Ve> 0,350, Vey e B e, <L yly <1, o -yl >e = H§<“y)
E

Theorem 1.12. [2](Milman-Pettis)

Uniformly convex spaces are reflexive.

1.3.1 Weak and weak* convergence

Till the end, X will denote a Banach space, X' its topological dual and X" the duality bracket
between X and X.

Definition 1.3.3. (Weak convergence)
We say that the sequence (z,) C X converges weakly to x € X and we note z,, — x in X if and

only if <x',xn> — <x',x> forallz' € X'.

Theorem 1.13. Let (z,) be a sequence of elements of X which converges weakly to = in X,
then (x,,) is a bounded sequence in X, i.e. there is a positive constant ¢ independent of 7 such that
|z,,|x < c. Moreover, we have

lall < lim inf ]

Theorem 1.14. (Weak compactness)

Let X be a reflexive Banach space and (x,,) a bounded sequence of X, then,

e there exists a sub-sequence (z,,, ) extracted from (z,,),en and € X such that z,,, — z in

X.

e if all sub-sequences (z,, converge weakly to the same limit x, then the sequence (,)nen

converges weakly to x in X.

Definition 1.3.4. (Weak* convergence)
The sequence (z,) C X weak* converges to z € X' if and only if (z,,,2) — (', z) for all

r e X.

Theorem 1.15. (Banach-Alaoglu)

Let X be a separable Banach space and () a bounded sequence of X', then

o there exists a sub-sequence (z,, ) extracted from (z,,) and 2 in X such that (z,, ) converges

weakly * to ' in X,
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1.4. Lebesgue spaces

e Ifall sub-sequences (z,, ) converge to the same limit z, then the sequence (2, )nen converges

weakly * to 2 in X

Theorem 1.16. Let X be a Banach space, X its dual. Let (z,,) and (z,,) be two sequences of X

and X' respectively.
e Letx, — x weakly in X, then :

dk > 0tel que Vn € N : ||z, ||y <K,

el < Jimn inf [Jaa]

e Soit x; — 7' faiblement dans X, alors :

3k > 0tel que Vn € N : ||z,

o <k,

Hx/HX, < lim inf Hx;L’

/o
n—00 X

e if z,, — x (strongly in X), then x,, — = weakly in X.

e if 2/, — 2 (strongly in X'), then 2/, — " weakly * in X .

e if 2, = = weakly in X and x; — (strongly in X", then <x;L, xn> — <x', x>
Proposition 1.5. Let (v,)n,en C X and (Yn)nen C X " such that

T, — x faiblement dans X,

Yp —y fortement dans X',

then,

nh—{go (Yn, In>x/,x = (v, $>X',X'

1.4 Lebesgue spaces

Definition 1.4.1. The convolution f * g of two elements f and g of Ly(R?) is defined by
(Fr9) @) =] fl@—y)g(y)d(y) .

in every point z € R¢.

Let 1 < p < oo. LP(RY) denotes the Lebesgue space on R? associated to the Lebesgue’s

measure, given its usual norm |[.[| .
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1.4. Lebesgue spaces

Definition 1.4.2. Let 1 < p < co. We denote by LP(IR?) the vector space of (classes of) functions
f : R — R which are measurable and p-th integrable (in the sense of Lebesgue) on R?. Let

1 < p < +oo. The Lebesgue space LP(R?) is defined by:

1l oy = (/Lﬂf(xﬂpdx)p.

If p = oo, then LP(IRY) is the vector space of (classes of) functions f : ) — R which are measurable
and essentially bounded, i.e. 3M > 0 such that | f(z)| < M p.p = € Q, which we provide with the

following norm

[/ | o (ray = ess. sup |f(z)] = inf {M > 0,|f(z)| < M,almost everywhere z € R?}.
z€eR

The notion of weak convergence in LP(R?) is defined as follows:
Theorem 1.17. Let f € LP(R?) and g € LP (R?). Therefore (f, g) € L'(R?)

o if 1 <p < oo,then f, = f weakly in LP(R?) if

[ Gl ata)de = [ (f@)g@) s, Vo e @D,

R4

e if p = oo, then f,, — f weakly *in L>=(R?) if

/Rd (ful@),g(@))dz — [ (f(),g(x))dz, Vge L'(R?).

Rd

with the scalar product (., .) on R<.

Proposition 1.6. Let (u,,), be a bounded sequence of LP(R?), 1 < p < oo, then we can extract

from the sequence (u,), a weakly convergent sub-sequence, that is

I(un)r, Jue LP(RY), Vo € j7d (RY), lim Up, @ dr = / u p dr.
Rd Rd

k—oo

Corollary 1.4. If (u,),, converges weakly to u in LP(R?), then we have

||u||LP(Rd) S nh~>r£olo lnf ||un||Lp(Rd) .

This result is false in L' (IR?) (because this space is not reflexive), on the other hand we have a
similar result in L"/%(R?) provided that we consider the weak topology * on this space, which is

the dual of the separable space L*(R?).

Proposition 1.7. Let (uy,), be a bounded sequence of L>=(RY). Then we can extract from the

sequence (uy),, a weakly convergent sub-sequence, that is

I (up)g, Ju € LOO(Rd), Yo € Ll(Rd), lim Up, p dr = / u @ dz.
Rd Rd

k—o00
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1.4. Lebesgue spaces

The product of two weakly convergent sequences does not necessarily converge weakly to the

product of limits. On the other hand, if one of the convergences is strong, the result is true.

Proposition 1.8. Let 1 < p, q, r < oo such that% = I% + %.

If (uyn)y, is a sequence of LP(RY) which converges strongly to u in LP(R?), (v,), is a sequence of
LY(R?) which converges weakly to v in L(R?). Then the product sequence (u,v,) weakly con-

verges to uv in L"(R?).

Proposition 1.9. For 1 < p < oo, let (uy,), a sequence of functions of LP(R?) which weakly

converges to u in LP(R?). Let us assume that

nh_{go sup HunHLP(Rd) < Hu”LP(Rd) :
Then the sequence (u,),, strongly converges to .
Definition 1.4.3. Let p € D(R?).

(1) the sequence (¢,) C D(R?) converges to ¢ in D(RY) if there exists a compact s’il existe un

compact k& C R? such that
o supp ¢ C k, supp p; C k, Vi € N,
e D%p; — D%p uniformly on £ for any multi-index «

(2) A distribution on R? is a linear application 7" : D(R?) — R, ¢ — (T, ) continues on
D(R?) and holds (T, ¢,,) — (T, ¢) in R for any sequence (,,) C D(R?) such that ,, — ¢
in D(R?).

Notation 1.4.1. We denote by D' (R?) the space of distributions on R?.

Definition 1.4.4. Let f € D' (R?) be a distribution. We define the first derivative of f noted f or
% by the formula

(r.e)==(r¢), voecDRY.

Proposition 1.10. For 1 < p < +oo. For any element (f,g) of LP(R?) x v (RY), fg is an
element of L' (R?), and% + 1% =1,

l|fgll < ||f||p ||9||p’ (Holder’s inequality).
Proposition 1.11. For 1 < p < +o0, and g € 52 (R%), the application T, defined by
T,(f) = | f(x)g(z)dx pourtout f € L”(R?).
Ra

is a continuous linear form on LP(R?).
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1.4. Lebesgue spaces

Theorem 1.18. [2](Riesz theorem)
Let € be an open of R%, 1 < p < oo and ¢ € (LP(€2)) . Then there exists an unique u € LPI(Q)

such that

VF e D@, (o) = [ ure)in
Moreover,

el gy = 1l oy -

Remark 1.4.1. For 1 < p < oo such that - + i —= 1. We have the following identification
(L?) = L7
Theorem 1.19. The space L?(IR?) is reflexive, for every 1 < p < infty.
Proposition 1.12. (/2)]) LP(R?) is separable for 1 < p < infty.
Theorem 1.20. The set C.(R?) is dense in LP(R%), 1 < p < o0,

To prove this theorem, we will recall a result necessary for the demonstration.

Lemma 1.3. Let f € L} (R?) such that for every

loc
¢ € Co(RY), [ f(x)p(z)de = 0.
R4
Thus, f = 0 almost everywhere on R%.

Proposition 1.13. Spaces L'(R?) and L>(R?) are not reflexives.

1.4.1 Convolution and regularisation
The convolution product is a classical operation in the case of functions.

Definition 1.4.5. Two functions f and g defined almost everywhere and measurable on R? are
said to be convolvable if, for almost any z € R?, the function y — f(z — y)g(y) is integrable on

R,
We then define the convolution product of f and g by the formula

(fxg)(z) = » flz —y)g(y)dy.

Let p, p’ be two conjugate exponents. If f € LP and g € 7 , then f and g are convoluted. For every
x € RY, the function that appears under the integral is well integrable since it is the product of
tau, f (which belongs to LP) by g (which is in Lp/). Thus, f * g is well defined as a function on R%.

Moreover, by the invariance properties of translations and symmetries of the Lebesgue measure,

fxg=gx*[.
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1.5. /7 spaces, 1 < p < 400

Theorem 1.21. (Young’s inequality)

Let1 < p,p,r < 400 such that % + ﬁ = %+1. Then there exists a constant C' > 0 such that

1f *gll, < C lI£1, lgll, . pourtoutf € LP(RY) et g € L” (R).

Proposition 1.14. Let f € L'(R?), g € L?(R?) et h € L? (RY). We have

/Rd(f*g)hdx:/ g(f+h)dz ou f(z)= f(—x).

R4

Proposition 1.15. Let f € C.(R%) and g € L}, (R?). Then f x g € C(R?).

loc

Proposition 1.16. Let [ € C*(R?) and g € L}, .(R?) (k an integer). Therefore

loc
frgeC*RY) et D*(fxg)=(D"f)*g.

In particular if f € C*(RY), and g € L} (RY), then f x g € C>(R?) with

loc

g1 9o g

D*f =
/ ox(t 0xg? " Oxg?’

on |loj=a01+as+..+ag<k.

1.5 /P spaces, 1 < p < 400

Definition 1.5.1. Let 1 < p < ¢ + oo, and let u = (u,,)nen be a sequence. We note

1
+o00 P
Jull, = (Z Iun|p> si 1<p<+oo,

n=1
and

|ull, =sup|u,| si p=+o0.
neN
We then define the space ¢7 as the set of sequences u for which the quantity [|u||, is finite.
If u, and v are two elements of /7, 1 < p < +o00, we check that |lu + v||, < [[ull, + ||v]|, by

using Minkowski’s inequality and a passage to the limit. This inequality allows us to show that /7

is a vector space, and that [|.[|,, is a norm on this space.
Proposition 1.17. (P is a Banach space, 1 < p < +oc.

We define D as the set of almost universally zero sequences with values in R, i.e. zero sequences
from a certain rank. Therefore, u = (u,)nen € D if there exists N € N for which, for all n > N,

u, = 0.
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1.5. /7 spaces, 1 < p < 400

1.5.1 Topological dual of /7., 1 < p < 400

Let 1 < p < oo such that Zl) + ]% =1.Letwv € ép/. For all u € (P, the real

(u,v) = Z Up U,

neN

Holder’s inequality ensures that the above series is absolutely convergent and that |(u,v)| <
[[ull» [[V]],, - The application
L,: " — R,

u — (u,v).
Theorem 1.22. [Let1l <p<ooetv € . The application

L,: 0 — R,

u — (u,v).

is a continuous linear form on /¥ of norm equal to ||v|| ;. Conversely, for any continuous linear

[

form ¢ on /7, there exists a unique v € ¢" such that ¢ = Ly, and so we have [[v[|,; = [|¢]]y-

Theorem 1.23. The application L define by :

L:t? — ()
v — L,

/

is a linear and bijective isometry of /7 in (¢P)

In particular, the space (¢?) is isometrically isomorphic to the space ¢” . The last theorem
above is a representation theorem, which allows to express in a "concrete" way the general form of

a continuous linear form on a normed vactor space.

Remark 1.5.1. The topological dual of ¢! is isomorphic to £>°, but the dual of £>° is not isomorphic

to /1. Moreover, the dual of Cj is isomorphic to £*.
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Gl CuapTER Two BR
(R%) SPACES, 1< p < 0

LP

uloc
e

Several definitions of amalgams of L? and /7, (1 < p < g < o0) have emerged as a result of
research in various fields. The first systematic study of these spaces was made in 1975 by F. Hol-
land [[10]]. Maria Luisa Torres Desquire [21], mentioned these definitions in chronological order
of publication and established their equivalence. In this chapter, we are interested in the study of

Ly (RY) = (L7, £) (RY).

uloc

2.1 (L*, (%) (R?) Spaces

2.1.1 Properties and definitions

Definition 2.1.1. Let f € Ly(R?). For » > 0 and p, ¢ > 1 fixed, we have

1

r q
P, = Z | Fxr Z] si 1 <p, g<oo
Lkez
_ 1
q
r 1 f oo = Zsuglijg q] si p=o0, 1<¢g<o0
Lkeza ™

Then the amalgam of L? and ¢4 on mathbbR® is given by:
(12, 6%) (RY) = { f € Lo(RY)., |, < +o0} 1<p, ¢ < o0
Some properties of these spaces are given.

Proposition 2.1. [2]|] The following inequalities hold true:

[fllpg, < Il 1<@<g<oo, 1<p<oo 2.1

1A, < I, 1<pi<pa<oo, 1<g<o0 2.2)
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22.1°
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(R?) Spaces

Corollary 2.1. [2])] The following properties are fulfilled

(LP 1) C (LP4?) 1< <g<oo, 1<p<oo (2.3)
(LP2,07) C (LP*,07) I<pi<pp<o0, 1<g< @ (2.4)
(I7,¢y € IPALY  1<g<p<oo (2.5)
LPULY C (LP,09) 1<p<g<c (2.6)

J. Feuto ([6], section 2.1 P.23) established the equivalence between the norms

(1) T ||'Hp,q r> 0

(ii) g -

Till the end of the work, we will focus on the spaces L?, (R?) which is our study space and the

main objective of this thesis.

2.2 L' (R?) Spaces

uloc

Definition 2.2.1. Let f € Ly(R?). For r > 0, and p > 1 fixed, we have

r = T . 27
1] 00 msélﬂginXIx ) (2.7)
Then

Lo (RY) = {f € Lo(RY, |If]l, o0 < +00}
Definition 2.2.2. Let y € v(R?) be a measure on R?. For ¢ > 1 fixed, we have

lell, = [Z ] (XJk)q] si 1<g<o0

kezd
lielloe = sup [ul (xz.)  si ¢ = oo.
TER?
Then the space of unbounded measures is given by:
M, = { € v(RY, ], < +00}
Proposition 2.2. (i) L?, (RY) = (LP, () (R?) is a vector subspace of Ly(R?).
(ii) f = ||fll, 00 is @ normon L, (R?).

Proof. e Let 0 be the null element of Lo(RY). For any mesurable subset E C R? , we have

10x£|[, = 0. Hence, |[0]], ., = 0. Thus, LP, .(R9) has 0 as a zero element and is non-empty.
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22.1°

uloc

(R?) Spaces

P
uloc

e Let f and g two elements of L?, (R?). For any mesurable subset E C R?, on a:

(f+9) xell, = [lfxe+gxell,

IN

1 xell, + [lgxell,

In particular, Vx € R, we have:

1+ 9)xell, < Ifxwll, +lgxell,

< Axellp s + llgxrllp oo

Next,

(f + Dllpoe < Sl 0 H9ll, o Therefore, f+g € L7, (R) and holds [|(f + g)[,0c <
1100 + 1l

p?oo.

e let (), f) an element of C? x (LP,[>) (R?). For any subset E C RY, we have:

M) xell, = A (fxe)ll, = AL xell, -

In particular, Yz € R?, we have: |[(Af) x1,|l, = [l [ fxz.]], - Next,
A o0 = IS 0c -

So. A.f € Liy(R?) and holds [|[(Af)l],, . = IA[If],cc -

uloc
Conclusion: From the above, it is clear that L?, (RY) is a subvector space of Ly(R?) et
f = [If1], o is anorm on L7, (R?).

uloc

Proposition 2.3. With f — ||f|[, ..; L., (R%) is a Banach space.

uloc

Proof. We know that (L%, (R%));

|||, o is @ normed vector space (according to the proposition
[2.2)). It remains for us to show that it is complete.

Let (fn),~, be a Cauchy sequence in (L?,,.(RY); We will show that it converges

uloc

1. Let us fix an element z € R?. Note that, for any integer n>1,

() faxr € LP(RY),

(i) V n, n e N*,

’anI;; - fn’XI; » < an - fn’Hp,oo'

Let € > 0 be a real number. Since(f,),, is Cauchy for . [|.|, ., there exists an integer

Nepsilon = 1 such that:

Vn,n €N (n > neetn > n) = |fo = furllpoe <€
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Hence, given (ii), we have:

Vn,n €N (n >n.etn >n. = | fuxrs = forxr

<e>.
P

So ( an[;)nN is a Cauchy sequence in L?(RY). This space being of Banach, ( anI;)

n>1

converges to an element which we note g,.

Posons g, = g, X1z et HQpr = nl_l>rfoo anXI; .

2. Letus pose f = sup ||gx||p = sup Hga;XI; »
xER4 z€R4

(RY);

(1) The sequence ( f, being Cauchy’s in ( L? ) , y is bounded :
n>1 g y Pp,00 y

uloc

1 fally, oo = M < o0

Note that for all z € R, we have:

L= gell, = lim || fuxs,

n—-+o0o

[ Fxazl], = [lgax

p-

For any finite subset £ of R?, we have:

Vn e N, sup||fuxi b S [ fll oo <M < Ho0.
BASY )

As a result, we have:
= 1l < M.
Sup [lgz[l, = i sup [|fuxll, < M
i.e. : sup|lg.||, < M. This being true for any finite subset of F of R?, we obtain
el

sup ||gzll, < M.ie.,|[|fll,.. < M.So, f e Ly, (RY).

uloc
z€Rd

(ii) Consider a real number € > 0 and a finite subset F of R?. The sequence ( fn)n21 being

Cauchy for |[|.[[,, . , there exists an integer n > 1 such that:
Vn,m e N, (n >n.etm > ne = 7ﬂan—mep’oo < 6) )

Now, for all elements n and m of N* we have

igg”anI;_me]; p:iggll(fn_fm))([; pZ r“fn_mep,oo'

Thus we have,

Vn,méeN" [n>n.etm>n] = sup an)g; — fmX1z , <€ (2.8)
z€FE
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(R?) Spaces

Moreover, we know that for any element x of RY, ( fnx I£)m>1 converges in L (Rd ) vers
9> = fxir. Therefore, for any integer n > 1 and any element = of R?, the sequence

( TnXir — fmX 1;) converges in LP(RY) to ( X — fx 1;) and therefore we have:

Vn e N, Ve Riona: WP_I}I;O anXI;; — fmXir

= HfﬁXQ;_'fXQ;

Thus, by stretching m — oo in the relation (2.8)), we obtain:

VneN.n>n = SUPanXI;—fXI; pge.
zeFE

E being any finite subset of R, we have in fact

VneN.'n>n = SuprnXI;_—fXI; < €.
zERI

1.€.

VneN. n>ne = ,||fn—fll, o <e

P, —

Thus (f),,>, converges to f in (LﬁlOC(Rd); HHPOO)
Therefore, (Lﬁloc(Rd); I.1] p7m> is complete.

|
2.2.1 Inclusive and unequal relationships
Proposition 2.4. Let 1 < py, po, 7 < 00.
Ifp1 < p2,
e < o1l -G %) pour tour £ € Ly(RY). 2.9)
And next,
Lo (R?) C Ly (RY). (2.10)

Proof. Let1l < p; < py < oo and f € Lo(R?). Note that 1 < E* < oo. Thus, by applying the

Holder inequality, we have for any subset £ of R?, measurable and with finite measure.

’

P2 D2
o)|Prde < )P oo / avec [ = —i—(—) =1,
L@ e < @l el avee (%) + (2
= |[|fxell, |E|17<H),

1 1
done |[fxell, < el 1B/

In particular, Yz € R?, we have:

df L - L
e () @.11)

I xell,, < I1Fx
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(R?) Spaces

By using (2.11)), we get Vz € R,

Gm) < 17,

HfXIg » < erXI;

e
p2

Next, we have:

(%)
p1§ T||f||p27oo./r P P2/

WAy 0o = sup || Fxz
z€R?

Remark 2.2.1. Let f be an element of Ly (R?).

o if [|f||., = Othen f = 0 and next, Yz € R,

[fxr]|,, = 0 and thus [|f]l. . =

SUP, ca || X2z = 0= |[Fxiz

oo’

e if || f||., > 0 alors, pour tout élément y € (0, || f||_), nous avons:

0<[{zeR|fI >} = {z €Tk lIfll > )

kezd

Next, 3k € Z% such that 0 < |[{z € I%, | f(z)| > ~}| and therefore

v < |IFxnll, <l

That means v < || f|| o < |[f|o» hence . || fl[o oo = |[f]l,o- Thus, in all cases, normal

vector spaces ((LP, ) (RY): , |y.||p7p) and ((Lp) (RY); H.Hp) coincide.
Corollary 2.2. Let 1 < p < oo. Then,

LP(RY U L®(RY C LP

uloc

(R%). (2.12)
Proof. Let1 < p < co. We have:

LP(RY) = (LP, P) (RY) c L, (RY).

uloc

Lo(RY) = (L, 0=) (RY) L7, (RY).

uloc

Thus, LP(R%) U L=(R?) C L?

uloc

(R9). n

Proposition 2.5. Let 1< pq, po, p < 00 such that pil + p% = = < 1. Then for any element f, and

g of Lo(R?),

1
p

r Hngp,oo S T Hprl,oo r HngQ,oo : (213)
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Proof. Let f and g be two elements of Lo(R?). We can assume , ||fg||, ., 7# 0. As a result,
P fll, 00 < 00t o |[fl],, 0 < o0 because otherwise the inequality is trivial. Let 7 be a strictly
positive real. For any subset £ C RY, by virtue of Holder’s inequality, we have: , || f gxell, <

1 fxell,, » llgxzll,, - In particular, Vo € R?, we have:

A faxell, < -l fxall, - loxe

P2’

Next,

folle = sup || foxs
zER4

p7oo

IN

jgﬂgl}fxf; - jgﬂgi\!gxf; -

IN

e fllpy oo 7 1191lps 00 -

|
Proposition 2.6. (Holder’s inequality)
Let1<p,q p,q < oosuchthat%#—z%: 1and%+ql—,: 1. We have:
/Rd [f(@)g(@)lde < |[f]],q » gl g - (2.14)

Forall f € (L?,09) (RY), g€ (Lp/,eq') (RY).

Proof. Let f € (L?, (%) (R%) and g € (Lp/,ﬁq) (R%). From Holder’s inequality for L spaces,

we have:
e 2, [ |f@go)ld < || fxl, 1l
Ji
next,
[ r@e@lde =3 [ 1r@e@lde < 3 Ioxall ol - @19
R kezd” Tk kezd

1% case: 1 < g < 400

From (2.15)) and Holder’s inequality for series, we get:

[ lr@t@lde < [Z 17 ;]

2™ case: g = 1

From (2.15)), we have:

[ #@lgta)ldo < [Z 17x;

kezd

1
7

1| a
Z’] - 7“Hf”p,q 7’||g||p’,q"

1
[Z [lgxs;

keZd

/.
p

] sup o
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Note that for any element k of Z¢,

\ T
loxsglly = o, ||, on @) = (kar 4 5 kor 4 5o kar + )

2’

next,

sup || gxsr

y = SUp HgXJ " SU@HQXJ,: o= rlloxall
S

Thus

/ F@g@)dz < L [1f1]y ol

3" case: ¢ = +o0

Based on the above, we have:

/|f r)|de = /Ig z)| da

< rllgllya o 1A gy

= ol fllpoo +llglly s -

N

Proposition 2.7. For any measure i € M,(R?), we have:

lall, < Mlully (1< g <p<o0).

Proof. Let € M,(RY).

(®) if p = oo, then

1

l14ll oo = sup |p} (xr.) < (Z |1l (xn) ) = e,

zCcRd kezd

(o) if 1 < g <p < oo, then

1

el = (Z |l (m)p)p < (Z |l (m)q> = [|pll, -

kezd kezd

Theorem 2.1. From the above, we have the following assertions:

(2.16)

(2.17)

(2.19)
(2.20)

LP(RY) C (L' ) (RN (L7, 6*) (RY) si 1< p < oo.

LP(RY) C (L2, 07) (RN (Ll,ep) (RY) si 1<p<q<oo(2.18)
(LP, ") (R ) (L=, ") (RY) < LP(RY) si 1<p< oo
(LP, ) (R N (L9, 6N (RY) C LIRY) si 1<g<p<oo.

LPRY < 17, (RY) si 1<p<oo.

2.21)
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Proof. These are direct consequences of Proposition 2.1, Corollary 2.1. [ |

Corollary 2.3. The following inclusions are fulfilled:

(LP, 0" (RY) < LP(RY) si 1<p<oo. (2.22)

LP(RY c (L2, 0)(RY) si 1<p<oo. (2.23)

L>*(RY) < Ll (RY). (2.24)

(L 00 (RY < LYRY) si 1<p<oo. (2.25)

Proof. This is a direct consequence of Proposition 2.1, Corollary 2.2. [ ]

Remark 2.2.2. From the above, we find that:

(L, €Y) (RY) C (L7, %) (R?) € Ly, (RY) (1 <p, ¢ < +o00). (2.26)

uloc

In other words, (L, (') (R?) is the smallest and L

uloc

(R?) is the largest of the amalgam spaces.

Similarly, M, (R?) is the smallest and M, (R?) is the largest of the spaces M,(R?) (1 < ¢ < +00)

Let f € (L', 0>) (R?) et m € M, (R?). The measure fm € M, (R?) is such that

/ dfm = / fam et | fllye = I fmll.. -

Hence, f + fdm is a natural integration of L}, (R?) into M., (R). In this sense, we have:

uloc

1
Luloc

(R?) € Mwo(R?), 1< ¢ < o0 (2.27)
Note that for 1 < p < oo, we have:

(LP, 0=) (R < LY, .(RY) C My (RY). (2.28)

uloc

Ifmlly = 1fllg < 1F1q- (2.29)

2.2.2 Properties

In this section, let us first note that the spaces L”, (R%) et M, (R?) (1 < p < +o00) are special

uloc

cases of the space (*°(R?).

Definition 2.2.3. Let 1 < r < oco. We have
(Co, 1)(R?) = Co(RY) N (L™, £7)(RY) (2.30)

and

(L, Co)®?) = { 1 & (17, %)(R?), / [/ 1y € ColRY) }
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Theorem 2.2. Let 1 < p, ¢ < oo. The space (Lp/,fq/)(Rd) [respectively (L¥, (Y)(RY)] is isomet-
rically isomorphous to(L”, £1)' (R?) [respectively a (L?, Cy) (R?)] through the application

g={f9), {},9)= Rdfgda:-
Forallg € (L7, ¢ )(RY) |(L7,¢1) (RY)| and f € (L7, 1) (RY) (17, Co) (RY)]. we have,
(Lol < Mfllg 1y g (1 <p, g <+00). (2.31)
Lol < WAl Iy (L <p<+o0). (2.32)
Proof. The proof of this theorem is similar to that of Proposition 2.6. See ([21, §3 P.33]). ®
Proposition 2.8. The amalgam space (LP, (9) (R?) (1 < p, ¢ < 00) is a reflective Banach space.
Proof. ([21]], corollaire 3.3) |
Theorem 2.3. We have the following statements
(i) C.(R?) is dense in (Cy, £9) (RY) pour 1 < ¢ < 0.
(ii) C.(R%)is dense in (LP,¢?) (RY) pour 1 < p, q < oo.
(iii) C.(R?) is dense in (LP, Cy) (RY) pour 1 < p < oo.

Proof. (i) First, note that C,(R?) is included in any amalgam space. Let f be a function in
the closure of C,(R%) in (L?,£>) (R%). There exists a sequence (¢,) C C,(R?) such that

lim ||¢, — fll.., = 0.Lete > 0, Ing,n € Nsuch that n > ng;
n——+o0o 4

"< e

6 = fll, = sup|éuxr — fxu

kezd r>0

Since |¢, — f| < [|¢ — fll > @ converges uniformly to f on R?. Therefore, f is contin-
uous and by the definition 2.2.3) f € (Cp, (%) (RY) si g is finite and if ¢ is infinite, then
(Co, 19) (R?) = Cy(R?Y) and by density of C,(R%) in Cy(R?).

(i) Let f € (LP,¢9) (R%), as L? is a sub-space dense of (L?,¢4) for 1 < p < 00,1 < ¢ < o0,

loc

then Ve > 0, there exists g € L7, (R?) such that || f — g]|,, < 5. If E is the compact support

loc

of g then there exists a function % in C..(£) such that [|g — hl|, < 5 \S(E)ﬁ (car C.(F)
dense in LP(E)). Next, we have ||g — hl| = < |S(E)|% lg — hll,. Therefore [|g — Al|, , < 5

p,q —

This implies || f — &l , < [If —gll,, + llg = hll,, < 5+ § = € Therefore C. is dense in

p,q —

(LP,1%) for 1 < p,q < oc.
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(iii) Similarly, since L (R?)is densein (L?, Cy) (R?) and the density of C..(2)(R%) in LP(Q2)(R?).

loc

We have the result.

|
Corollary 2.4. (i) (Cy, (") (R?) is dense in (LP,£7) (R?) for 1 <p < oo, 1 <r < ¢ < ox.
(ii) (L",0%) (RY) is dense in (LP, ) (RY) for 1 <p<r < oo, 1 < s < q < oo.
(iii) (L, ¢%) (R?) is dense in (L=, (9) (R?) for 1 < s < q < oo.
(iv) (L",Cy) (R?) is dense in (LP, Cy) (RY) for 1 < p < r < oo.
Proof. This is a direct consequence of Corollary 2.2 and the theorem [2.3] [ ]

Remark 2.2.3. C(R?) is a subspace dense of (L7, Cy) (R?), for 1 < p < oco.

Definition 2.2.4. Let A be one of the following spaces L7, (R%), (Cp, £>°) (R?) or (L7, Cp) (R?),

1 < p < oo. Forall t € R?, 7, denotes the translation operator on A or on M, (Rd), 1 <s <o

define by:
@) 7if(s)=f(s—1t),f €A seR
(b) Tu(B) = p(—t + B),u € My(R?Y), B C R%
The following theorem shows that for any ¢t € R¢, 7, is a bounded operator.

Theorem 2.4. Let 1 < p < oo and ¢t € R? There exists a constant ¢ > 0 such that

@ I7fllpee < cllfll o forall fe L7, (RY)

i) rpl < cllulls  forall pue Ma(RY).

Proof. Lett,u € RY.

letus set S(t +u) = {t,u e R/ I, N I, # ¢}

17 fll, 00 = sup [|fxrll,
z€R4

= sup || fxr,_||
z€R4

=  sup |[fxu
(t+u)eR4

I7efllpee < D sup Ifxadl,
S(t+u)UERd

Nl o -

p

p

IN

UDs Master Thesis, 2020-2021 26 (©Joseph Junior PENLAP TAMAGOUA



22.1°

uloc

(R?) Spaces

@) Since [rul (xr.) = ul (xi_.) < 22 |wl (xr,)- Therefore,
S(—t+z)

Il = sup 7] (xr,) < esup [u] (xr.) = ¢ llpll -

z€eRd z€RY
|
Corollary 2.5. Let t € RY. The translation 7, is a continuous endomorphism of L?, (R?).
Proof. 1t follows directly from the theorem [2.4] |

Lemma 2.1. (a) if f € Co(RY), then
fim e — £l = 0,

(b) if f € LP(RY) (1 < p < o0), then
i 1 — 1, = 0.

Proof. (i) Let f € Cy(R?). For all ¢ > 0, there exists a neighbourhood V' of 0 such that
|f(z) — f(y)| <€ Vy —x € V.Next, forevery t € V and = € R, we have :

[f(x=1) = f(2)] = |7 f(z) = f(z)| <€ car t =z —(zx—1)
Since € is arbitrary and V' does not depend on z, then |7 f — f|| <€ Vt e V.
(i) Let1 <p < oo, f € LP(RY) and f; € C.(R?Y) such that || f — Jill Lo (ray- We have:
Imnf = flop@ay < If = hillpo@ay + 17 fy = fill ogay + 11 = Fll oy
< eted | — leLp(Rd) -

On the other hand, it comes that }ILIE)I(I) 170 f1 = fill 1o (gay = O, thus }lg% 17nf = Fll o (ay = O

Theorem 2.5. Let 1 < p,q < oo. If f € (L, £9) (R?), (LP,Cp) (RY) ou (Cy, £%) (R?),

1 < s < o0, then the application ¢ — 7.f is continuous on R

Proof. Suppose initially that f € (Cp, £4)(R?), by virtue of the theorem there exists g €
C.(R?) such that || f — 9llooq < € Therefore, according to Lemma 2.2, we have ||1,g — gl|, < €.

Therefore,

||th - f||oo,q S ||th - Ttg||oo7q + ||7—tg - gHoo,q _l_ ||g - f”oo,q

IN

¢ ||f_gHoo,q+€+€
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From Pr% I7ef = fllaoy = O

% ’
The proof for f € (LP, Cy)(R?) is similar. Let f € (L, ¢7)(R?), par densité de (Cp, £7)(R?) dans
(LP, £9)(RY), (1 < p, q < 00), there exists g € (Cy, £?)(R?) such that || f — g]|,, .. Therefore,

I7f =g < s =7gll, g + g =9l g + 15 =9l
< CNf=9lpg + 119 = gllcg + llg = fll,q

< (O + 1)6 + HTtg - g”oo,q :
Since e does not depend of ¢. It comes that

||th - f”p,q S HTtg - g”oo,q <€

Thus
11_13(% Hth - f||p,q = 0

The case ¢ = oo leads from the lemma 2.1. [ |

2.2.3 Usual and convolution product

In this section, we introduce two operations on amalgam spaces and unbounded measure spaces of
type q: the usual and convolution product. These operations have been previously studied [3], our

first result is a generalization of the product in LP-spaces.

Proposition 2.9. Let 1 < p,q,r, s < oo such that % + % =

have:
(@) (LP,07) (RY) (L7, €°) (R) € (L™, ") (RY),
(b) (Co, £7) (R) (Co, £) (RY) € (Co, ) (RY),
(c) (L7, Co) (RY) (L7, Co) (RY) € (L™, Co) (RY).
Furthermore, if f € (LP,£9) (R?) and g € (L", () (RY), then we have:
19l < 11 q 9] s -

Proof. Soient 1 < p,q,r,s < oo, f € (LP,¢7) (RY) et g € (L",¢°) (R?). We will apply Holder’s

inequality twice.

m m

[isarmar= [ amaory? s ([ rac)” ([ oras)

Therefore, applying Holder’s inequality a second time, we have:
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1ol = ( Ifg\md:v>m
>(/

S (fire) (fora)
<> [(/fpdx)gr [(/gdw)]
< sz]LZg]

< 1fl, lgl,.

From (a).
(b) follows from (a) and the definition (the case ¢ = s = infty is well known).
Now, let f € (LP,Cp) (R) et g € (L, Cy) (R?), according to (a), fg € (L™, ¢>°) (RY) et

1 gllm < 11, gl

This implies that lim || fgl[,, < lim || f||,[lgll, = 0, (car || f||, and [[g||, are continues). Hence,
fg € (L™, Cy) (R?). From (c). [ ]

Proposition 2.10. Let 1 < ¢,s < oo. Then M,(R?) x M (R?) C M, (R? x R?), where n =

max(q, s) and we have:
[ xoll, < lpll, [lv]l,  pourtout p € M,(RY), v € M (RY).

(2.33)

Proof. Let € M,(R?) and v € M (R?), we have:

ol = > llwx oll (xa)"

kezd

= > |ulfol (xs)"
kezd

< Z’M’(XJk)n ’U’(XJk>n
kezd

< el ol

< iz vl -
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Theorem 2.6. [21] Let 1 < ¢,s < oo such that % + 1 —1 =1 < 1. There exists a constant

C > 0 such that for all u € M,(R?) and v € M (R?), z and v convolvable and i x v € M, (R?).

Moreover,
[ vll, < C |l [loll; -
Corollary 2.6. If f € (L', £%) (RY), 1 < g < oo, u € My(RY), 1 < s <ooand t+1-1=1 <1,

then f as a measure convolves with p, f x u is an absolutely continuous measure and we have

(Femy) = | Fly—z)du().
Moreover,
frue (L) RY) and |[f*pll, < C Ifll, el -
Proof. Let f € (L', ") (RY) C M,(R%),1 < q < oo, then according to the theorem [2.6] f * 1 €

M, (R%). In other hand,

1l = IO )l < g Nl -
|

Corollary 2.7. Let 1 < ¢,s < oo. If f € (L',£9) (R?), g € (L', £*) (RY) and § + ; = <1,
then f x g € (L', (") (R?) and

fr9ty)= | fly—=z)g(x)dz.

Rd
Furthermore,

1F* gl < Al gl s -

Proof. According to the identities (2.27)), (2.29) and the corollary[2.6| we have: fxg € (L', (") (RY)

and

1 * gl = G Dl < WSl gl -

Theorem 2.7. Let1 < p,q,7,s <oosuchthat J+ —1=; <land +;—1=, <1, then:

1
G) (L7, 09) % (L7, 0%) C (L™, ");

i) (LP, 09) (Lp',ﬁq'> CCh 1<p<oo, 1<q< oo

(ii) (L7, (17, 6) € (Co. "), 1<ps<oo, 1<g<oc,

(iv) (LP,07) (U,W) C (L™ Cy), 1<pr<oo, 1<gqg< .
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Furthermore, if f € (L?,¢7) (R%) and g € f € (L",¢%) (R?), then f *x g € f € (L™, ¢") (R?) and

we have:

AD) N # 9l < C 1fll lgll,, i m#1 and C>0;

(A2) || f=* 9”1,n <C ”f||1,q ”9”1,5'

Proof. For p = r = 1, then (i) and (A.2) follow from the corollary Next, for 1 < p,q,7, s <

00, We set:

() 24L=1 Z4L=1 %42 =]
m r m p P T

@ f+d=lsts=1 0+ =1

Let ¢ € C.(R?) and x,y € R%, we have from (1) that:

/;; P ‘¢($+y)‘ ’f(iﬁ)‘ !g(y)|dxdy :/I: /lz (’f(w)yp ’g(x)‘r)m (W(.T—l—y)‘m |f<x)’p>r

/

(Io(z + )™ lg@)")" dady.

Using Holder’s inequality for : oy = -, ay = %, a3z = :z% filz,y) = |f(0)]|g(x)]",
falz,y) = olx+y)™ [f(@), f3(z,y) =6z +y)[" |g(x)|" we have,

- a1 a1

/ [9(x +y)| | f(2)]9(y)| drdy < / fi(z, y)dzdy [/ fz(%y)d:rdy]
v g g v

1 a3

/ f3(z,y)dxdy
rJIg |
Or

/f,ﬁwwmwz< uwww></mwww) L8 ol -
kv Ik Jr Ik

De méme, on a:
/ fol, y)dady = / 1otz +) (@) dady
Ji S Ig
- /v )" dady, §(x) = $(~2)
C / ()| dady

/Tyﬁmwmw<<cnwmummmf.
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In the same way+,

|| ey < ol ol
From (1) and (2), we get:

1
7

|| teta s wlls@llal dedy < € (111205l o [T T A

1
7/

1607 ol ]?
= C Il ot gy W o N9
1 ’
S [ A e R ey v
, 1
ol '

Let’s apply Holder’s inequality a second time for a; = =, avp = 7. a3 =, HfHL,,(JI:) HQHSLT(J,;?)’

J=

LnL J’r |g”LT JT i|

f2 = \|¢||LmI(J£) 1AW Eo oy f5 = \|¢||LmI(J£) g1 zr (o7 We get:

S5 [ [ e llsllatlai < c ZZJ%] llzzﬁr [ZZfs]%-

kezd kezd keZd kez keZd kez keZd kezd
Or

SOSTASI ALY gl < 1£1E, gl

keZ4 kezd kezd kezd

! !
In the same way, > 3 fo < 6], 1%, and 3= 3 fs < |6l v llg]l:,. Thus, we con-
keZd kezd kezd kez

clude that:

/7. ; o+ )l f(@)] |g(y)| dedy < Y Z/ ch z+y)l [f(@)|g(y)| dedy

keZd keZd
1 1
/ 7

< o[ufng,qngni,s]”[||¢||?nf,nf||f||g,} 6l e gl ]
= C 1Mt 11 Nl

As a result of the above, the linear functional defined by:
- /d o(z) f*glx)de, ¢c€ C'C(Rd)
R

holds |T(¢)|| < C (|l v [If1],4 l9]l,..- Since Ce(R?) is dense in <Lm/, l”/> (RY) [respectively
n (Lm/, CO) (RY) if (n = 1)], T extends uniquely into a continuous linear form which is again
denoted by T'in (L™ ,1" ) (R%) = (L™, 1")(R%) [respectively in (L™ , Cy)' (RY) = (L™, I')(R%)]

such that ||T'|| < C || f]| according to the theorem Therefore, we have:

»,q ||g||’r‘,8

1F % gl < C 1N g gl s
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which proves (i) and (A.1).
Let f € (LP,¢9) (R%) and g € (Lpl,fq/)(]Rd). From (i), f * g € L>®(RY). Let us assume that
1 < p < oo, we have forall ¢, s € R%:
Fro)= [ rt=agads = [ nf@geds = (71.9).
R R

according to the theorem [2.2] on a:

[F*9(t) = fx9(s) = [nf,9) = (7:],9)]
= [nf =7/, 9)]

S ||ng/7q/ ||th - TSf”p,q’

Since ||7if — 75 f][,, — 0, according to the theorem then we conclude that f * g is continuous.
Now, since C,(R?) est dense dans (L?, £9) (R9) et L} (R?) is dense in (Lpl,éql) (RY), let € > 0,

loc

there exists ¢ € C.(R?) et h € L}

loc

(R?) such that:

€
16 = fllpg < et b=yl gy <

€
gl o 191,

This implies by (A.1) that:

loxh—frglle < lloxh—dxgllg+loxg—F*gl
S H¢Hp,q ||h‘ - g”p/,q/ + Hng/,q/ H¢ - pr:q

€.

A\

Since ¢ is arbitrary and ¢ * h € C.(R?), this means that f * g is the closure of C,(IR%) in the space
of continuous functions on RY, given C..(R?) is dense in Cy(R?), then f * g € Co(R?).

If p = 400, so we reason the same way.

Or now f € (LP,¢7) (R%) and g € <Lp/,€3> (RY). From (i), f * g € (L>,¢") (R?). Since 1 =
% + ql, > qi,, alors <Lpl,€s> (R%) C (Lp/,éql) (RY), par (ii), f * g € Co(R?). Hence (iii).

Let f € (LP,¢7) (RY) and g € <L”, 6‘1/> (R9). Since LP(R?) and LP(RY) are dense in (L?, () (RY)
et (L™, (%) (RY) respectively, then for all € > 0, there exists ¢ € LP(R?) and ¢ € L%(R?) such that:

€

[t/

1f =l < et |lg—l,, <

gl

From (A.1), we have:

A\

1fxg =5 Vllpe < Ifxg= 050+ 10%xg— bt
< Ngllvg 1f = 0llpg T 110ll,q llg = @,y

€.

A\
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Since ¢ is arbitrary and ¢ x 1 € L™(R?), then f x g is the closure of L™(R?) in (L™, ¢>) (RY)
because according to (i), f * g € (L™, £>)(R%). By density of L™(R?) in (L™, Cp) (RY), we
conclude that f * g € (L™, Cp) (R?). Hence (iv). |

Remark 2.2.4. Identities (A.1) and (A.2) are Young’s inequality for amalgam.
Theorem 2.8. Let 1 < p,q,s < cc. If%—l— 1 —1=2<1,then,
(i) (LP,07) « My C (LP ™),
(i) (LP,09) Mq/ C(L*,Ch), 1<p<oo,l<qg<oo,
(iii) (Co,09) * Ms C (Co, L"), 1< g < oo,
Hence, (Cy, ") * M, C Cy, 1 < q < oo. Furthermore, if f € (L7, £9) (R?) et u € M,(R?), then:

(A3) LS * pllyy S Wl g llulls stp# 1.

Ad) L pll < 17N el

Proof. We reason in a similar way to the proof of the theorem [ |

23 (L7, )" (R?) Spaces

We aim to define the space (L?

uloc

)* (RY) which is a particular case of the amalgam (L?, £9)* (R?),
I<p<a<g<oo

In [7], I. Fofana defines space (L?, £9)" (R?) as follows:
(L7, 00 (RY) = { £ € Lo(RY) / £l 0 < +00}
with
= Aa=33 d
£l g0 = supr™a75) £l f € Lo(RY). @34)

Definition 2.3.1. For all 1 < p < a < oo, We have:

(L2oe)® R = { f € Lo(R%) / |l 0 < +00}
with

7l = 0070 fl e f € Lo(RY. (2.35)
Proposition 2.11. Let 1 < p < a < oo.
(RY).

(a) (LP, )" (R?) is a vector subspace of the vector space LF,
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voo defines anorm on (Ly,, )" (RY).

Proof. Letl <p<a< oo.

. (L,

uloc

)* (R%) # ¢ because it contains 0.

e Moreover, if f and g are two elements of (L”

uloc

)* (R%), et B € R, then we have:

180 = 500D 151 o0 = 181500 r*C5) 111, 0 = 1811l - 236)

Next,
£+ 0l = 500272 f 4 gl
r>0
d(5-3) (2.37)
<suprfe e ([[f]], o + 9l 0 :
>0
S Hng 00, + ”ng,oo,a :
Thus, (L, )" (R?) is a sub-vector space of LF, (R?).
(b) Let f € (Ly,.)" (R?) such that ||f]|, ., = 0. As defined in the standard ||.|, . ., we have
r [ f1l, o = 0 forall v > 0. Since ||. |, ., is a norm then f = 0.
The inequalities (2.36) and (2.37) allow us to conclude that the application f — [/ ||, . , is anorm
on (L) (RY).
|
Proposition 2.12. (L},,.)" (R?), |||, . is @ Banach space, for 1 < p < o < o0.
D d
2.3.1 Some subsets of (L”, )" (R%)
Proposition 2.13. Let1 <p < +ocet f € (P, )" (R?).

Proof. Let f € (L, )" (R?), z € RY and r > 0. We have

- |/ e Vd} NG Pd] — 171,

So for any real number r > 0, we have:

[ fxn,

Al oo = sup || Fxrll, < I, -
z€R4

Hence,

sup , = lnn <
up 1 llpoe = Hm o [ £]l, 00 < £, -
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If sup , || f||, » = 400, then the equality follows.
r>0 ’

Let assume that sup , || f||,, ., = M < +oo. For any real number r > 0, we have: ,. || f[|, ., < M.
>0 ’ )

Next: || f|,, ., < MP. Therefore

[fllp oo < M = sup [ f e car sup[lf]l, = [I£1;-
T
]

In the following proposals, we examine the relationship between the spaces (L7, )" (R?) and
those of Lebesgue. We also justify the condition p < « that we use in the definition of spaces

2, (RY).

uloc

Proposition 2.14. Let 1 < p < a < oo. Then

1fllpooa < I fllgs Sorall fe Lo(RY). (2.39)

Proof. Let f € Ly(R9).

If p = «, then, for any real r > 0,

llxall, < UL =11, = eRY

Thus,

< Ml -

p?oo -

>0

If p < a < 40, then, for each real » > 0,

1_1 1_1
AL <G x|, < G2 £

Hence,
d(i-1
110 = sup [ x|, < #2G2) 111,
xER4
Therefore,
dfi-1
) f oo < UF
So

d(it-1
£l e = 0072 £l o0 < 11
r

Remark 2.3.1. The above proposition indicates that L*(R%) C (L?, )*(R%),for1 <p < a <

uloc

—+00.

The following proposition shows that this inclusion becomes an equality if o = p.
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Proposition 2.15. Let 1 < p < +oo. For any element f of Lo(R?), there exists a constant C > 0,

such that:

ClA, < M1 lp e < WAL, -

Proof. Let f € Lo(R?), according to the proposition [2.14] on a:

[ MR | M

Since there is equivalence between the norms 4 ||.|,, . €t ||, .. there exists a constant C' > 0

such that:
|| el | 4|
Thus,
SUD [ fllp o0 = CSUD £l 00 = C 1 fllp o0 p -

However, according to the proposition [2.13]

1 f1l, = SUp £l 0 -

1
& Il < Ml eca < £,
]

P
uloc

By defining the spaces L (Rd), we always set the condition p < a < +00. One is entitled to

wonder what would happen if this condition were not met. a > +o00, then || f[|, ..o < [[f]l, 000
So that

(L,

uloc

)" (RY) € (L7, £%)" (R?) = L*(R?). (2.40)
The other cases are dealt with in the following proposition.

Proposition 2.16. Let 1 < a < ocand1 < p < oo. If a < p, then

(Lisoe)” (RY) = {0}

Proof. Let f € (L?, )* (R?). Letus pose A = ||f For any real r» > 0, we have:
uloc

p,00,"

A

_1y-
P

11100 <

Q [~

il
Next, lim 1 £]l,,~ = 0,since ;—+ > 0. The case p = +oc is obsvious, because || f| ,, ., = [ /.-

Thus f = 0. [ |

Remark 2.3.2. Let1 <p; <p<a < x.
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e For any element f € Ly(R?),
Hf”pl,oo,a S C Hf”p,oo,a’ (241)

where C' is a constant independent of f. As a result,

(L%

uloc

)" (RY) C (L

uloc

)* (RY). (2.42)

e The space (L}

L™ (R?) is the classical space of Morrey.

o Lo(RY) C (L7

uloc

)" (RY) € (Ly

uloc

)" (RY) C (L,

uloc

)" (RY).

2.4 WL (R?) Spaces, (1<p < c0)

uloc

p
uloc

After defining the spaces L, (R?) and give some properties, we will in this section discuss the

Sobolev space W5* (R9).

uloc

Definition 2.4.1. Let 1 < p < oo. The space u € W, (R%) is a Sobolev space and we note

uloc

ou

Yi

(RY), erLr

uloc

Wb (RY) = {u € Ly, (RY), 1<i< d} .

The space W, (R%) is associated with the norm

loc

|

HUHWL’SC(W) = (HuH[izloc(Rd) + Hquiizoc(Rd)> " (2.43)
is a Banach space.

Remark 2.4.1. As usual, in the case of ot p = 2, we have H', (R?) = W;? (R?) and we define

uloc
on H!
uloc

(R?) the scalar product

uloc

d
ou Ov
(u> 'U)Hl (RD) = (U7U)L12Lloc(Rd) +Z (8_%7 a—yl) P , pourtout u, v € Hiloc(Rd). (2.44)
=1 c

The associated norm

1
2

2 2
il ey = (lellle, o+ I90llle, @) (2.45)
Proposition 2.17. We have the following statements:

(1) The space W.i* (R?) is reflexive, 1 < p < co.

uloc

(ii) The space W P (R?) is separable, 1 < p < .

uloc
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2.5 Conclusion

The interest of L

uloc

(R?) spaces is highlighted by the fact that the spaces (L?, ¢?) (R?) introduced by

N. Wiener are a generalization, all the same the space (L”, )® (R?) highlighted in the penultimate

uloc

block of this chapter is a sub-vector space of our study space and whose classical Lebesgue L®(R?)

spaces, L(®+°)(R?) Lorentz’s and (L

L)Y (R?) Morrey spaces are either subspaces or special

cases. In the third chapter of our work, we will exploit the results of this study to solve a linear

partial differential equation of the second order in divergence form in Wil’gc(Rd).
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APPLICATION IN SOBOLEYV SPACE

uloc
e

3.1 Problem statement

The main objective here is to solve in the sense of distributions the linear partial differential equa-

tion of the second order in the following divergence form:
—div(AVu) +u = f +divF  in R?, (3.1)
where

fel?, RY FelL? (RY et Aec L®RY)™ tels que a|A]> < A2)AAX < BN, 3.2)

uloc uloc

for any (z,)\) € R? x RY, o et 3 are two positive real numbers. We show that (3.1) has a unique

solution in W72 (R%).

uloc

3.2 Existence and uniqueness results

We will need the Caccioppoli inequality formulated in the following theorem:

Theorem 3.1. (Caccioppoli’s inequality)
Let u be a solution of (3.1)). Then there exists a constant C' > 0 (depending only on «, 5 and d)

such that
sup][ (IVulf’ +ul*) < C + C sup][ (ILF12+|F)?) . (3.3)
BT(CC) B'r(x)

rcRd z€R4

Proof. Letn € C3°(Ba-(z)) be a regularising and truncated function such that n = 1 in B, (z),

UDs Master Thesis, 2020-2021 40 ©Joseph Junior PENLAP TAMAGOUA



3.2. Existence and uniqueness results

0 <n<1land|Vn| < Cr~!. Taking un? as the test function in (3.1), we have

/ n* AVu.Vu + / nu? = —2/ nuAVu.Vn — 2/ nuk.Vn
Boy(x) Boy(x) Ba,(x) Ba(x)

_ / P H N+ / Fo?u (3.4)
Bor(z) Bay(x)

=L+ L+ 13+ 1,

The left-hand side of the above equality can be approximated by:

a/ 7ﬂvW+/"ﬁM%
Bor(z) B,

For the right-hand side, we use Young’s inequality and the properties of the operator A.

«

o< §[ wvatee [ vl
Bar(z) Bar(z)

2

’

Ll <C W |F|*+C Jul* |V
Bor(z) Bar(x)

«

S e [
BQT(CC) B ()

1 1
HE Y T Y AT
Bayr (J?) Ba

1I3] <

Finally, (3.4) becomes:

C
/"<WW+MWSO/ <WW+M%+7/ |W+0/ (f12 + |FP).
Br(z) Boy(z) T J By (2) Boy(z)

From ([9], Lemma 0.5), we infer that there exists a constant C' = C'(«, (3, d) such that

C
[oawel ey < [ e [ (e, 35
Br(x) r Bay () Bar ()
From (3.5)), we have
C
Foavel s <o Wlef (PP 3.6
Br(x) " J Ba(2) By (2)
Next, by substituting sup in || and using the following inequality
z€R

Sup][ |v|2 < C(d) sup ][ |U|2, Yov € Liloc(Rd)
Bar(z) By ()

rER4 rcRd
It comes that

C
sup ][ (|Vu|2 + ]u|2) < — sup ][ |u]2 + C sup ][ (|f\2 + |F|2). (3.7
Br(x) r Br(x) Br(z)

zcRd zcRd z€R4

In (3.7)), we observe that if r > +/2C, then the estimate li is satisfied. The case 1 < r < v2('is

obtained from the case » = 1. [ |

UDs Master Thesis, 2020-2021 41 ©Joseph Junior PENLAP TAMAGOUA



3.2. Existence and uniqueness results

Theorem 3.2. Let f € L2, (RY) and F € L2, (
W2 (R%) solution of (3.1). Furthermore, u holds :

uloc

R?)4, There exists an unique function u €

SUP][ (IVul* + Jul*) < C supf (IFF+1F7). (38)
2€R4 J B,.(2) 2€R® J B, (z)
where C' = C(r,d, «, ) > 0 and B,(z) = B(z,r) denotes the open ball centred at z with radius .

Proofl. Existence.

Let 7 > 0 fixed and v, € W,*(B,) the unique solution of
—div(AVv,) + v, = f +divF dans B, = B(0,r).

By adding the condition v, = 0 on dB,, we get that (v,), € W_.?(R%). Let us show that the

loc

sequence (v,.), is bounded in V[/lzc2 (]Rd). We proceed as in ([[11]]). For the variational formulation of
the above equation, we choose as test function, n%v,, ot 1, = exp(—c|z|), for 2 € R? fixed, abd

¢ > 0 chosen arbitrarily. we get

—/ diV(AVUT)ngvT—i-/ v, = / fnzvr—l—/ divFn?v,
B, B, B, B,
/ AVUT.V(ngvr)Jr/ vl = / v, + | HN(nv,)
i T r BT

ngAer.er—i—/ nv: = —2/ nzv,.Aer.Vnz—Q/ 0. H.Vn,

B

— nEH.V”UTjL/ hn?v,

B
= _[1+IQ+]3+]4.

The left-hand side of the above equality is bounded by:

o / 72 Vo2 + / 27,
B, B

For the right-hand side, we use Young’s inequality and the properties on the operator A.

L] = ‘—2/ n.v,Av,..Vn,

1 k
< —/ UE\VUZ]2+6/ 2A% |V, for e= —
€ /B, af

Q
0 o< P enps 2 / 01 [V

Br

afb
|f2|<7/ bog [ e
nl< 2 [ wva g [ a2
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3.2. Existence and uniqueness results

afic? k 2
Il < &€ 2 2 / 2

’ 4’ ]{? Brvrnz+4aﬂcg BTnz|f‘ )
where k£ > 0 is chosen arbitrarily. Note that |Vn,| = cn,.

Thus, we have:

Bk Be? k
A A CE

1
Next, for k = et c= % (%) we have the following estimation:

3 o} 1
a/ nilvmh/ nﬁvfs/ {§\f!2+(4—52 —) !FlQ} . (3.9)

The inequality ( . 3.9) shows that the sequence (v,.) is bounded in W, (R¢), indeed, for any compact
K C R4, the left-hand side of the inequality |D is bounded by: C (a Is. Vo |* + [, B vf) otl

Ck = ming n? > 0. While the right-hand side is approximated by C' [;, n? where
o (0] 1 2 3 2
O = (154 ) IF I+ 31115,

Hence, there exists an unique sub-sequence (v,) and a function v € wh

loc

?(R%) such that the above-

mentioned sub-sequence converges weakly to v in ;" 2(Rd) This means that

loc
v, — v dans Wo*(R?) — faible.

Note that v is a weak solution of || in R¢. By introducing the limit lim inf in || we get:

T—00

a/ nﬁ\%\2+/ n?v?s/ [ I +(4ﬁ ~IF )} (3.10)
Rd R4

Thus, we deduce from (3.10) that:
Sup][ (IVo]* + [v)?) < C, (3.11)
z€R4 r(2)

where fBr ) = and C does not depend on z. For r > 1, we have according to the

1
|Br(2)] fBr(Z)
Caccioppoli inequality,

c
][ Vol +][ f? < _2][ Vot +C {][ P +][ |F|2} R D)
Br(z) (%) 7" J Bay(2) (%) Br(z)

for any z € R?, where C depends only of d, o and 3. Next, we have

sup][ ) < Cy sup lv]?. (3.13)
z€R4 J By, z€R4 J B
Thus,
2 2 —2 2 2 2
sup £ 1VeP s f o< ot sup f o0 {sup f s irp).

xcR4 J B, zcR4 J B, zeR4 J B, z€R4

Ultimately, if » > (2C )%, then 1| The case r = 1 stems from [16].
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3.2. Existence and uniqueness results

2. Uniqueness.
Proving the uniqueness of the solution amounts to considering (3.1)) with f = 0 and F' = 0. That is

to say

—div(AVv) +v =0 dans R?

According to the Caccioppoli inequality, we have:

C
/ |vu|2+/ lv|* < —2/ v]?. (3.14)
Br(2) Br(2) " J By (2)

For » > 1. It stems from (3.14) :
C
/ o] < —2/ Jof. (3.15)
Br(2) 7 J By (2)

However, by virtue of (3.13)) and (3.1T])), we have
/ ]v|2 < C.
Bay(2)

/ |v[2 <Cr72 pourr>1. (3.16)
By (z)

Hence, (3.15)) becomes

Thus, by making » — +o0, we get v = 0 on R, [

Remark 3.2.1. The weak solution v of 1} given by the theorem satisfies

1

; ; ;
sup <][ |Vv|p> < C sup (][ |f]2) + C sup (][ |F|p> (3.17)
z€R4 B(z,1) z€RL B(z,1) z€RL B(z,1)

] N :
sup (][ |Vv|q) < C sup (][ |f] ) + C sup (f |F|p> (3.18)
zEeR? B(z,1) z€RY B(z,1) zeR? B(z,1)

for all p > 2, C' depends only of d, o and /3, where % = — é pour d > 3. If d = 2, the left-hand

side of (3.18) can be replaced by ||v]|; .

To have (3.17), we use the inverse estimation of Holder [9]: if v is a weak solution of —div(AVv)
f +divF dans B, = B(z,r) alors,

(£, )

= 1 1
for all p > 2, C' depends only of d, o and f3.

1
p

we) <5 (f ) e (L) vor (£7)

r
2

In this part, we were asked to solve in the sense of distributions a linear second order partial
differential equation in divergence form in the Sobolev type space Wull’zc(Rd). The locally uniformly
bounded solutions determined in this chapter play the role of the "correction term", which is very
important in homogenization theory and is the solution of the associated correction problem defined

by the gradient of the solution which is unique.
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& Conclusion &

Having reached the end of this work whose objective was the study of locally uniformly bounded
spaces and the application of the properties of these spaces to the search for locally uniformly
bounded solutions of the equation in the Sobolev type space Wil’fc(]Rd). For this reason, we
have found it necessary to present some basic and useful results of functional analysis.

In this chapter, which is generally devoted to the preliminaries, we have focused mainly on the
study of Lebesgue spaces and the space of sequences, where we have highlighted various properties
relating to them. This allows us to introduce the second chapter of our work and to enter the heart of
the matter. In this part, we defined the amalgam of LP(R?) and ell>*(IR?) (space of locally uniformly
bounded functions) as that Banach space of (classes of) functions on a locally compact group, At
the same time we have established some results in this space such as Holder’s inequality, Young’s
inequality, the usual product and convolution to name a few and finally we have highlighted its
relation with other spaces. Finally, we have shown that these spaces contain the Lebesgue LP(R?)
spaces.

And finally in chapter three of this dissertation dedicated to the application as mentioned above,
we first presented a preliminary result specific to our equation: the Caccioppoli inequality. Subse-
quently, we established through this inequality the existence and uniqueness theorem of the weak
solution of our equation which is the main result of this thesis. In sum, this work opens the door
to many applications especially in the theory of homogenization where the type of solutions deter-
mined in chapter three plays the role of a very important "corrective term" in this theory. It is in this
perspective that we propose in our future work to solve problems in this type of space by means of

homogenisation techniques, while proposing a corresponding numerical scheme.
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