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Context




Root-knot nematodes

microscopic endoparasites feeding on plant roots

more than 5000 host species concerned
- changes in root architecture
- wilting of vegetative part, yield reduction

o 14% of global crop losses worldwide
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Root-knot nematodes

@ microscopic endoparasites feeding on plant roots
@ more than 5000 host species concerned

- changes in root architecture

- wilting of vegetative part, yield reduction

o 14% of global crop losses worldwide
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Phenotypic variability

o Strong variations in the extent of = p——
damages within and among plant species o = omn
5.0
H
Plant growth ;f”
yes no g o
E

2
Initial inoculum (eggs/g soil)

yes

o Resistance is efficient but
> few resistant genes identified
tolerant susceptible > only for a few species
> may favour the emergence of
virulent nematodes

@ Interest for tolerance

Pathogen reproduction

no

? o Several possible mechanisms
reported
> high root growth rate
resistant > better water and nutrients uptake
> delayed senescence ...
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Phenotypic variability

o Strong variations in the extent of e e
damages within and among plant species

== Urtica dioica

Plant growth
yes no

Relative shoot weigth

2
Initial inoculum (eggs/g soil)

yes

@ Resistance is efficient but

. > few resistant genes identified
tolerant susceptible > only for a few species

> may favour the emergence of
virulent nematodes

@ Interest for tolerance

Pathogen reproduction

no

o Several possible mechanisms
reported

) > high root growth rate

resistant > better water and nutrients uptake

> delayed senescence ...
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Phenotypic variability

Aim
Better understand the mechanisms behind (differential) plant susceptibility to nematodesJ
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Phenotypic variability

Aim

Better understand the mechanisms behind (differential) plant susceptibility to nematodes

Research question

Which are the physiological mechanisms behind plant tolerance?
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Phenotypic variability

Aim

Better understand the mechanisms behind (differential) plant susceptibility to nematodesJ

Research question

Which are the physiological mechanisms behind plant tolerance?

Approach

Coupled modeling of plant physiology and pest
population dynamics
o better representation of pathosystem dynamics
- interplay between plant and pest dynamics
@ better prediction of plant growth rate and yield

@ screening of interesting plant phenotypic traits
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Plant model




Plant description

Ptant model
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Plant description

@ 3 plant compartments:
> shoots
> roots
> fruits
@ 2 resources:
> carbon (structural and free)
> water

o Uptake, transport and allocation
through plant compartments

> growth and respiration processes
> regulatory functions with respect to

the water status of the plant

Thornley (1972), Dewar (1991)
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Mathematical equations

dWs
dt

Shoot
dCs

dt

dw,
dt

Root
dc,

dt

dWs
dt

Fruit
dci

dt
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Mathematical equations

dw,
dt
Shoot
" ac o 1ldwi,
dt Ucf(ws) W. dt s
———
Uptake Dilution
aw,
dt
Root dc, B idW’C
dt W, dt
Dilution
aw;
dt
Fruit
e LW
dt Wr dt
Dilution

Joseph Penlap MacBiosCore seminar October 16-19, 2023 10/27



Mathematical equations

dw,
dt
Shoot dc 1 1 dw.
d5= ocf(hs) — < (Tr + Tr + Ta) - G
t —— | —— Ws dt
Uptake Transport T~
Dilution
dw,
dt
Root dC 1 1 dw
= =T, -——'C
dt o~ W, dt
Transport
Dilution
dWr
dt
Fruit dc 1 1 dw
& = w T W
——
Transport o
ilution
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Mathematical equations

dw, G
@ ~ g
Growth
Shoot
o = af ()~ (T 4T — (. )kl ()
dt c s r f a sT(Ps K. +C
Uptake Transport
Growth
dw, C
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Growth
Root dC. 1 c
= — T, —(f ke f (¥r .
dt o~~~ ( ) (¢)K,+Cr
Transport
Growth
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Tdt kff(”’)K e
Growth
Fruit dC 1 C
f . f
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Transport
Growth
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Mathematical equations

dw, C
dt kf(d’s)K +CW
—,_/
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Mathematical equations

dWs G
e = () e W
—
Growth
Shoot ac L c o L aw
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Mathematical equations

dWs Cs K
= ksf(1)s Wi vs Ws Vs | o= | Ws,
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Plant dynamics

Tomato plants
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Test of plant model: environmental scenarios

The model is able to react correctly to a panel of environmental scenarios:
o allocation towards the most limiting resource

Shading Water stress

—— Ratio /’ — Ratio

--- Ratio_omb - --- Ratio_stress
5 60 - - g%
° °
T CEY
5 g
E o
g ]
& 20 2

& 10
0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120
Time [days] Time [days]
Oc — o—c/2 Vo, — —200MPa
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Plant-Nematode interactions




Reported effects and model hypotheses

o Hijack of cell machinery amplifies carbon sink in root galls - M.G.K. Jones. et al.
1981

@ Increased hydraulic resistance - R. Dorhout, F.J. Gommers, 1991
o Change in plant vascularization - Bartlem et al. 2014

o Inhibition of photosynthesis by water stress and/or interference between synthesis
and translocation of growth hormones - B. Loveys and A. F. Bird, 1994

@ Decrease of respiration intensity - T. Mateille, 1994

@ Changes in glucose metabolism, nucleogenesis, proteogenesis... - T. Mateille, 1994

o Nematode growth rate and body size depend on food supply - McLeod et al. 2001

o Host physiological stress affects egg production and sex ratio -Ferris et al. 1984,
Snyder et al. 2006

o No effect of nitrogen fertilization on nematodes development - Spiegel et al. 1982
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Plant-nematode model

Flux

Hydraulic resistance
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Plant-nematode model

Plant model
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Mathematical equations

RKN model:

dE dJ
= LE - bE - peE P AN )
M . ~ —— ~~ ~~
Egg laying Egg hatching  Mortality ) RKN entry Maturation  Mortality
Free i Inside root dF
>

——~ = hE — BLW, —u,h ——= nd — urF

dt ~~ —— \2,_/ dt ~— S~
Egg hatching | arvae infection  Mortality Maturation  Mortality

Plant roots:

dw, Ko
dat k’f(w’)K TV W - (K,,,+ c,) Wi
Growth Narure! Additional drop due to carbon shortage
dc, 1 G cr 1 1 dw,
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Mathematical equations

RKN model:

dE dJ
=r(C)F—- hE — pE —Q(C)ﬁJQW - nd  —(pitp)d
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= kf(3r W, — W || W, — Q(C)eBh W,
dt (’”)K +C NS K (K:,+c,~> wz_,
Natural infected roots
Growth Additional drop due to carbon shortage
dC, 1 1 dw,
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Preliminary Simulation plant-pest model
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Preliminary Simulation plant-pest model
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Model calibration




Calibration strategy

o Highly complex and non-linear model
@ More than 30 parameters

o Few data available in literature
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Calibration strategy

o Highly complex and non-linear model
@ More than 30 parameters

o Few data available in literature

- Dedicated experiments
- 2-steps calibration strategy:

@ Calibration of the plant model on data from healthy plants

> data processing
> global sensitivity analysis
> numerical estimation of sensitive parameters

@ Calibration of the plant-nematode model on data from infected plants

> global sensitivity analysis: nematode parameters
> numerical estimation of sensitive parameters
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Plant model Calibration

- Dedicated experiments
- 2-step calibration strategy:

@ Calibration of the plant model on data from healthy plants

> data processing
> global sensitivity analysis
> numerical estimation of sensitive parameters

Work in progress!
O e
o O

=/ \°
—
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Plant Model Calibration

ArchiNem project (INRAE 2020-21)

Experimental data available on 3 contrasted species (tomato, pepper, curcubit)
o Plant growth, physiology (healthy and infected)

- Shoot, root, fruit dry mass (destructive): 3 time-points
- Leaf number: 12 time-points

@ 6 replicates per time-point

. Average number of leaves for tomato plants (cv. St Pierre
Dry mass of the roots (g) Dry mass of the aerial parts (g)

Average number leaves

T

&&s@sas«@&wv@
= Control = Inoculated = Control ® Inoculated ¢ & T g o8 LA i

Date

Tomato Pepper Cucurbit Tomato Pepper Cucurbit

=12 wai t12vai

Collaboration with C. Caporalino (INRAE)
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Data processing

Objective: increase the number of data points by exploiting non-destructive
measurements (leaf number)

Allometric relation: shoot weight vs leaf number

Pepper

® Weghted smoothing curve.

@ Spline smoothing of leaf data
average dynamics
o Calibration of a general allometric relation (3
time-points x 3 species) "

Number of leaves

M = a, Lb, i = species1,2,3

2 6
Time [week]

M = shoot dry mass, L= number of leaves

@ Prediction of shoot dry mass from leaf data at
12 time-points

> v o
.

Mass of shoots [g]

ok N w s u

4 6
Time [week]
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Multi-variate global sensitivity analysis

inputs : 26 parameters, reference value +30%
outputs : Shoot and root dry masses dynamics (vector)
method: R multisensi package (PCA- and ANOVA-based)
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Multi-variate global sensitivity analysis

inputs : 26 parameters, reference value £30%
outputs : Shoot and root dry masses dynamics (vector)
method: R multisensi package (PCA- and ANOVA-based)

Shoot growth Root growth

Generalised sensitivity indices Generalised sensitivity indices

kr

grand_ks ks

alpha
w_limit grand ks
sigma_c gamma_r
alpha w_limit

gamma_s

Input Variables
Input Variables

sigma_c

e con
ol ol
GSI GSI

8 sensitive parameters (1 parameter fixed from litterature data):

ks shoot growth rate t, active C transport to fruit
kr root growth rate 7, root senescence rate
oc shoot carbon fixation rate « vascular architecture

Ks shoot growth dynamics

Joseph Penlap October 16-19, 2023 23 /27



Numerical parameter estimation

o 1 calibration per species considered

o Estimation of 7 (sensitive) parameters
o Weighted (7) least-square function for real and reconstructed mass data:

In ; ; 2 N; i i 2
K z’: Msal — Mdata + (1 - 7[‘) zj: Msol B M;];red
N; std’ N; M

i=1 Jj=1 pred

Dry mass data Reconstructed data from leaf number

2-step estimation strategy:
Q Global search (differential evolution algorithm)

@ Local search around solution of step 1 (least square)
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Calibrated plant model

Tomato plants
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On-going work and perspectives

o Calibration of RKN-related parameters on data from infected plants

o lIdentification of key physiological and architectural traits underlying plant tolerance
to RKN infestation

o Multi-seasonal® effect of plant tolerance: crop rotations (tolerant, susceptible and
resistant plants), management practices, effect of environmental conditions...

2Nilusmas et al., Evolutionary Applications, 2020
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Phenotypic variability

o Strong variations in the extent of = e i
damages within and among plant species s = eranes
.g‘ 10
H
Plant %o
Yes No K
2 06
i
: 04
%]
§ 213 .

2
Initial inoculum (eggs/g soil)

Tolerant Susceptible
o Resistance is efficient but
> few resistant genes identified
> only for a few species
?? > may favour the emergence of
virulent nematodes

No

o Interest for tolerance
Aim o Several possible mechanisms
reported
> high root growth rate

> better water and nutrients uptake
> delayed senescence ...

Better understand the mechanisms behind
(differential) plant susceptibility to nematodes
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Resource transport resistances

Water transport

Ry =re (Wr + G)™% (1)
Ix, Ix,
RX}’ = W:(;r + Wsi;s (2)
Carbon transport
Ron = 71wz + oo (3)
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Carbon transport (T)

The carbon flow® T in phloem vessels T = g C,, with g the volume flow rate,

qr Fruit

Shoot qr + qf Rph,f :

ar
_—
Rph,r @
Root
Therefore,
{(qr + qf)Rph,s + qr Rph,r == (Cs - Cr) Tf = quS
(Gr + qr)Ron,s + qr Ronr = (Cs — C) 4

il b T — s
=\ )7 C

3Minchin et al., Journal of Experimental Botany, 1993
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Plant-nematode interaction: modulating functions

Male proportion

Ko

0(C) = b = (4)

Reproduction rate
(rmax - rmin) Cr

(G = i K )
Establishment of the feeding site
Wer"™
r) — 6
2(c) Wers + K& ©)
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Global sensitivity analysis

Goal: ldentifying the most influential parameters

inputs : 26 parameters, outputs : dry masses along time (vector)

Method
@ fractional factorial design to explore parameter space
@ PCA to reduce output and capture its variability
@ ANOVA to compute sensitivity indices (SI)

ss components
Sl = 7SS GSI = ; Sl X inertiay

SS = sum of squares, TSS = total sum of squares
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Parameter set

TABLE 1 — Standard values for sensitivity analysis

@ 26 parameters

o 3 levels for each parameter
(reference value and
+30% of reference value)

@ some reference values
from literature

active transport

Parameters Description Value Interval

oc Specific carbon fixation rate by the aerial part 0.4 +30%

ow Specific transpiration rate of aerial part 12 +30%

Tph,s» Tphors Tph,f | Xylem resistance coefficients to water flow 0.5,0.5, 0.005 +30%

Tay.ss Ty Tay,f | Phloem resistance coefficients to sap flow 5,501 +30%

. Coefficient of resistance to water absorption 1 L 30%
by the roots

kg, ke kg Specific growth rates 0.14,0.12,0.6 +30%

K, K, Ky Half-saturation constants related to growth rate 0.1, 0.05, 0.01 +30%

Var Ve Vfo Mortality and leaf fall coefficients 0.1,0.01, 0.001 +30%
Hill coefficients for transition, th,

Rt Ty T ill coef Cm,‘ s for transition, grow! 10, 10, 10, 10 L 30%
pho and water

Wi Transitior! cocefficient from vegetative to is L 30%
reproductive phase

S Half-saturation constants related to the effect

K. K, . -1400. -1600 3 fixed values
of water on growth and photosynthesis

g, Oy, Of Allometric coefficients 2/3,2/3,2/3 +30%
» spirati i fi ial,

Tame Tome T ¢ respiration oraenia 10.001,0.001, 0001 | 4 30%
root and fruit compartments

P T o Gmwlh. respiration coefficients of aerial, root 001,001,001 L 30%
and fruit compartments

Crh Rhizodeposition coefficient 0.1 +30%

trati te of carb lated t
‘o concentration rate of carbon related to 05 L 309
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