Modelling plant-nematode interactions to understand plant tolerance

Joseph Penlap, Suzanne Touzeau, Frédéric Grognard, Valentina Baldazzi

MacBiosCore seminar 2023

Outline

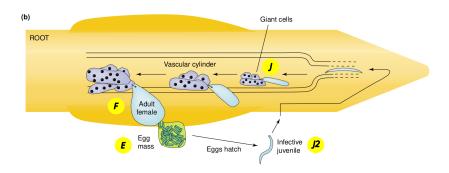
Context

- Plant model
- Plant-Nematode interactions
- Model calibration

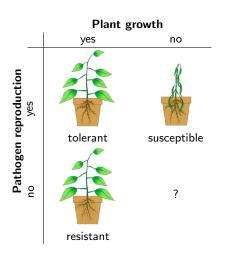
Context

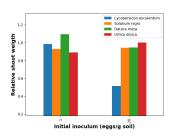
Root-knot nematodes

- microscopic endoparasites feeding on plant roots
- more than 5000 host species concerned
- changes in root architecture
- wilting of vegetative part, yield reduction
- 14% of global crop losses worldwide



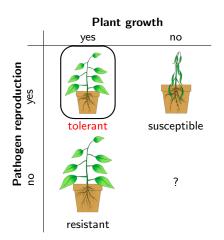
Root-knot nematodes

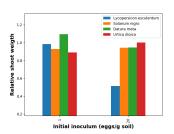

- microscopic endoparasites feeding on plant roots
- more than 5000 host species concerned
- changes in root architecture
- wilting of vegetative part, yield reduction
- 14% of global crop losses worldwide



October 16-19, 2023

• Strong variations in the extent of damages within and among plant species




- Resistance is efficient but
 - few resistant genes identified
 - only for a few species
 - may favour the emergence of virulent nematodes
- Interest for tolerance
- Several possible mechanisms reported
 - high root growth rate
 - better water and nutrients uptake

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 | 三 | つ へ ○ |

delayed senescence ...

 Strong variations in the extent of damages within and among plant species

- Resistance is efficient but
 - few resistant genes identified
 - only for a few species
 - may favour the emergence of virulent nematodes
- Interest for tolerance
- Several possible mechanisms reported
 - high root growth rate
 - better water and nutrients uptake

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 | 三 | つ へ ○ |

delayed senescence ...

Aim

Better understand the mechanisms behind (differential) plant susceptibility to nematodes

6/27

Aim

Better understand the mechanisms behind (differential) plant susceptibility to nematodes

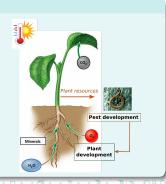
Research question

Which are the **physiological mechanisms** behind **plant tolerance**?

6/27

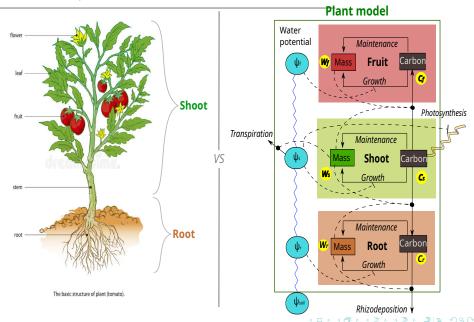
Aim

Better understand the mechanisms behind (differential) plant susceptibility to nematodes


Research question

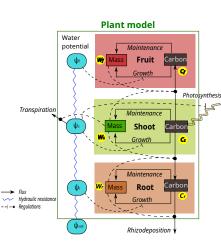
Which are the physiological mechanisms behind plant tolerance?

Approach


Coupled modeling of plant physiology and pest population dynamics

- better representation of pathosystem dynamics
 - interplay between plant and pest dynamics
- better prediction of plant growth rate and yield
- screening of interesting plant phenotypic traits

Plant model


Plant description

Plant description

- 3 plant compartments:
 - shoots
 - roots
 - fruits
- 2 resources:
 - carbon (structural and free)
 - water
- Uptake, transport and allocation through plant compartments
 - growth and respiration processes
 - regulatory functions with respect to the water status of the plant

Thornley (1972), Dewar (1991)

October 16-19, 2023

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \\ \frac{dC_s}{dt} = \end{cases}$$
Root
$$\begin{cases} \frac{dW_r}{dt} = \\ \frac{dC_r}{dt} = \end{cases}$$
Fruit
$$\begin{cases} \frac{dW_f}{dt} = \\ \frac{dC_f}{dt} = \end{cases}$$

$$\begin{cases} \frac{dW_s}{dt} = \\ \frac{dC_s}{dt} = \underbrace{\frac{\sigma_c f(\psi_s)}{U_{\text{ptake}}}} \\ \\ \text{Root} \begin{cases} \frac{dW_r}{dt} = \\ \\ \frac{dC_r}{dt} = \end{cases} \end{cases}$$

$$\begin{cases} \frac{dW_f}{dt} = \\ \\ \frac{dC_f}{dt} = \end{cases}$$
Fruit
$$\begin{cases} \frac{dC_f}{dt} = \\ \frac{dC_f}{dt} = \end{cases}$$

$$-\underbrace{\frac{1}{W_s}\frac{dW_s}{dt}C_s}_{\text{Dilution}}$$

$$-\underbrace{\frac{1}{W_r}\frac{dW_r}{dt}C_r}_{\text{Dilution}}$$

$$-\underbrace{\frac{1}{W_f}\frac{dW_f}{dt}C_f}_{\text{Dilution}}$$

$$\begin{cases} \frac{dW_s}{dt} = \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{\text{Uptake}} - \frac{1}{W_s} \underbrace{(T_r + T_f + T_a)}_{\text{Transport}} \\ \end{cases} - \underbrace{\frac{dW_r}{dt}}_{\text{Uptake}} = \\ \\ \text{Root} \begin{cases} \frac{dW_r}{dt} = \\ \frac{dC_r}{dt} = \frac{1}{W_r} \underbrace{T_r}_{\text{Transport}} \\ \end{cases} - \underbrace{\frac{1}{W_r} \frac{dW_f}{dt}}_{\text{Dilution}} \\ \end{cases} - \underbrace{\frac{1}{W_r} \frac{dW_f}{dt}}_{\text{Dilution}} \\ \end{cases}$$

Dilution

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{\text{Growth}} \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{\text{Uptake}} - \frac{1}{W_s} \underbrace{(T_r + T_f + T_a)}_{\text{Transport}} - \underbrace{(f_c \quad) k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{\text{Growth}} \\ \end{cases} - \underbrace{\frac{1}{W_s} \frac{dW_s}{dt}}_{\text{Dilution}} \\ \text{Root} \begin{cases} \frac{dW_r}{dt} = \underbrace{k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{\text{Growth}} - \underbrace{(f_c \quad) k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{\text{Growth}} \\ \end{cases} - \underbrace{\frac{1}{W_r} \frac{dW_r}{dt} C_r}_{\text{Dilution}} \\ \end{cases}$$

$$= \text{Fruit} \begin{cases} \frac{dW_f}{dt} = \underbrace{k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{\text{Growth}} \\ \end{cases} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_r}_{\text{Transport}} \\ \underbrace{\frac{dC_f}{dt} = \frac{1}{W_f} \underbrace{(T_f + T_a)}_{\text{Transport}} - \underbrace{(f_c \quad) k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{\text{Growth}} \\ \end{cases} }_{\text{Dilution}}$$

$$\begin{aligned} & \begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{Growth} \\ \end{cases} \\ & \begin{cases} \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{Uptake} - \frac{1}{W_s} \underbrace{(T_r + T_f + T_a)}_{Transport} - \underbrace{(f_c + r_{g,s}) \, k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{Respiration growth} - \underbrace{r_{m,s} \left(\frac{C_s^n}{K_m^n + C_s^n}\right)}_{Maintenance respiration} - \underbrace{\frac{1}{W_s} \frac{dW_s}{dt} \, C_s}_{Dilution} \\ \end{aligned}$$

$$\begin{aligned} & \begin{cases} \frac{dW_r}{dt} = \underbrace{k_r f(\psi_r) \frac{C_r}{K_r + C_r} W_r}_{Growth} \\ \end{cases} \\ & \begin{cases} \frac{dC_r}{dt} = \frac{1}{W_r} \underbrace{T_r}_{Transport} - \underbrace{(f_c + r_{g,r}) \, k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{Respiration growth} - \underbrace{r_{m,r} \left(\frac{C_r^n}{K_m^n + C_r^n}\right)}_{Maintenance respiration} - \underbrace{\frac{1}{W_r} \frac{dW_r}{dt} \, C_r}_{Dilution} \end{aligned}$$

$$\begin{aligned} & \begin{cases} \frac{dW_f}{dt} = \underbrace{k_f f(\psi_f) \frac{C_f}{K_f + C_f} W_f}_{Growth} \\ \end{cases} \\ & \begin{cases} \frac{dC_f}{dt} = \underbrace{\frac{1}{W_f} \left(T_f + T_a\right)}_{Transport} - \underbrace{(f_c + r_{g,f}) \, k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{Respiration growth} - \underbrace{r_{m,f} \left(\frac{C_f^n}{K_m^n + C_f^n}\right)}_{Maintenance respiration} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} \, C_f}_{Dilution} \end{aligned}$$

- (□) (個) (達) (達) (基) (基) (のQで

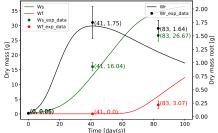
Shoot
$$\begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s} W_s}_{Growth} \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{Uptake} - \frac{1}{W_s} \underbrace{(T_r + T_f + T_a)}_{Transport} - \underbrace{(f_c + r_{g,s}) k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{Growth} - \underbrace{r_{m,s} \left(\frac{C_s^n}{K_m^n + C_s^n}\right)}_{Maintenance respiration} - \underbrace{\frac{dW_s}{K_m^n + C_s^n}}_{Dilution} - \underbrace{\frac{dW_r}{dt} C_s}_{Crowth} \\ \end{cases}$$

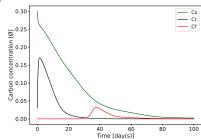
$$\begin{cases} \frac{dW_r}{dt} = \underbrace{k_r f(\psi_r) \frac{C_r}{K_r + C_r} W_r}_{Growth} \\ \frac{dC_r}{dt} = \frac{1}{W_r} \underbrace{T_r}_{Transport} - \underbrace{(f_c + r_{g,r}) k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{Growth} - \underbrace{r_{m,r} \left(\frac{C_r^n}{K_m^n + C_r^n}\right)}_{Maintenance respiration} - \underbrace{\frac{1}{W_r^{1-\beta}} C_r}_{Rhizodeposition} - \underbrace{\frac{dW_r}{dt} C_r}_{Dilution} \\ \end{cases}$$

$$\begin{cases} \frac{dW_f}{dt} = \underbrace{k_r f(\psi_f) \frac{C_f}{K_f + C_f} W_f}_{Growth} \\ \frac{dC_f}{dt} = \underbrace{\frac{1}{W_f} \underbrace{(T_f + T_a)}_{Transport} - \underbrace{(f_c + r_{g,f}) k_f f(\psi_f) \frac{C_f}{K_f + C_f}}}_{Growth} - \underbrace{r_{m,f} \left(\frac{C_r^n}{K_m^n + C_r^n}\right)}_{Dilution} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_f}_{Dilution} \\ \frac{dC_f}{dt} = \underbrace{\frac{1}{W_f} \underbrace{(T_f + T_a)}_{Transport} - \underbrace{(f_c + r_{g,f}) k_f f(\psi_f) \frac{C_f}{K_f + C_f}}}_{Growth} - \underbrace{\frac{C_r^n}{K_m^n + C_r^n}}_{Dilution} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_f}_{Dilution} \\ \frac{dC_f}{dt} = \underbrace{\frac{1}{W_f} \underbrace{(T_f + T_a)}_{Transport} - \underbrace{(f_c + r_{g,f}) k_f f(\psi_f) \frac{C_f}{K_f + C_f}}}_{Growth} - \underbrace{\frac{C_r^n}{K_m^n + C_r^n}}_{Dilution} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_f}_{Dilution} \\ \frac{dC_f}{dt} = \underbrace{\frac{1}{W_f} \underbrace{(T_f + T_a)}_{Transport} - \underbrace{(f_c + r_{g,f}) k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{Growth} - \underbrace{\frac{C_r^n}{K_f + C_f}}_{Dilution} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_f}_{Dilution} \\ \frac{dC_f}{dt} = \underbrace{\frac{1}{W_f} \underbrace{(T_f + T_a)}_{Transport} - \underbrace{(f_c + r_{g,f}) k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{Dilution} - \underbrace{\frac{1}{W_f} \underbrace{(T_f + T_a)}_{Dilution}}_{Dilution} - \underbrace{\frac{1}{W_f} \underbrace{(T_f + T_a)}_{Dilution}}_{D$$

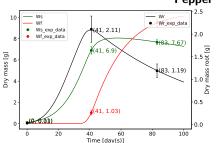
◆□▶◆圖▶◆불▶◆불▶ 불|필 જ)<

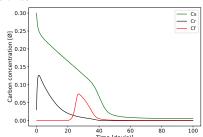
Joseph Penlap


$$\text{Shoot} \begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f\left(\psi_s\right) \frac{C_s}{K_s + C_s} W_s}_{\text{Growth}} - \underbrace{\gamma_s W_s}_{\text{Natural senescence}} - \underbrace{\gamma_s \left(\frac{K_m^n}{K_m^n + C_s^n}\right) W_s}_{\text{Additional drop due to carbon shortage}} \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f\left(\psi_s\right)}_{\text{Uptake}} - \underbrace{\frac{1}{W_s} \left(T_r + T_f + T_a\right)}_{\text{Transport}} - \underbrace{\left(f_c + r_{g,s}\right) k_s f\left(\psi_s\right) \frac{C_s}{K_s + C_s}}_{\text{Growth}} - \underbrace{r_{m,s} \left(\frac{C_s^n}{K_m^n + C_s^n}\right)}_{\text{Maintenance respiration}} - \underbrace{\frac{1}{W_s} \frac{dW_s}{dt} C_s}_{\text{Dilution}} \\ \frac{dW_r}{dt} = \underbrace{k_r f\left(\psi_r\right) \frac{C_r}{K_r + C_r} W_r}_{\text{Growth}} - \underbrace{\gamma_r W_r}_{\text{Natural senescence}} - \underbrace{\gamma_r W_r}_{\text{Additional drop due to carbon shortage}} \\ \frac{dC_r}{dt} = \underbrace{\frac{1}{W_r} \underbrace{T_r}_{\text{Transport}} - \left(f_c + r_{g,r}\right) k_r f\left(\psi_r\right) \frac{C_r}{K_r + C_r}}_{\text{Natural senescence}} - \underbrace{r_{m,r} \left(\frac{C_n^n}{K_m^n + C_r^n}\right)}_{\text{Maintenance respiration}} - \underbrace{\frac{1}{W_r^{1-\beta}} C_r}_{\text{Plittion}} - \underbrace{\frac{1}{W_r} \frac{dW_r}{dt} C_r}_{\text{Dilution}} \\ \frac{dW_f}{dt} = \underbrace{k_r f\left(\psi_r\right) \frac{C_r}{K_f + C_r} W_f}_{\text{Growth}} - \underbrace{\gamma_f W_r}_{\text{Natural senescence}} - \underbrace{\gamma_f \left(\frac{K_m^n}{K_m^n + C_r^n}\right) W_f}_{\text{Natural senescence}} \\ \frac{dC_r}{K_m^n + C_r^n} - \underbrace{\frac{1}{W_r} \frac{dW_r}{dt} C_r}_{\text{Dilution}} \\ \frac{dC_r}{K_m^n + C_r^n} - \underbrace{\frac{1}{W_r} \frac{dW_r}{dt} C_$$

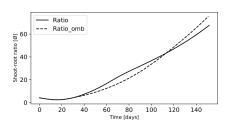

◆□▶◆圖▶◆불▶◆불▶ 월달 쒸٩○

10 / 27


Plant dynamics

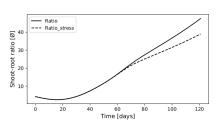


Pepper plants



Test of plant model: environmental scenarios

The model is able to react correctly to a panel of environmental scenarios:

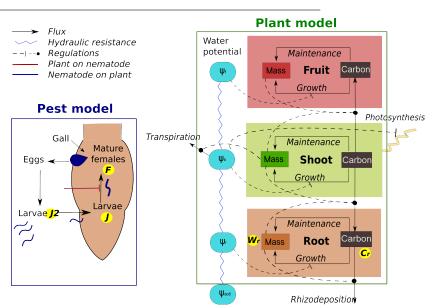

allocation towards the most limiting resource

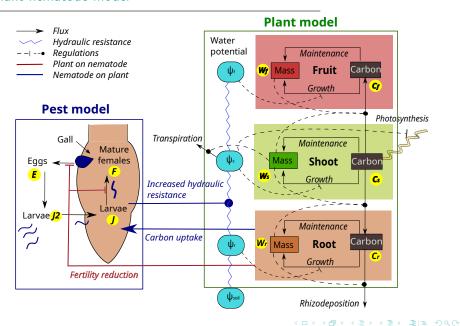
Shading

$$\sigma_c \to \sigma_c/2$$

Water stress

$$\Psi_{soil}
ightarrow -200 MPa$$


$$Ratio = \frac{W_s}{W_r}$$


Plant-Nematode interactions

- Hijack of cell machinery amplifies carbon sink in root galls M.G.K. Jones. et al. 1981
- Increased hydraulic resistance R. Dorhout, F.J. Gommers, 1991
- Change in plant vascularization Bartlem et al. 2014
- Inhibition of photosynthesis by water stress and/or interference between synthesis and translocation of growth hormones - B. Loveys and A. F. Bird, 1994
- Decrease of respiration intensity T. Mateille, 1994
- Changes in glucose metabolism, nucleogenesis, proteogenesis... T. Mateille, 1994
- Nematode growth rate and body size depend on food supply McLeod et al. 2001
- Host physiological stress affects egg production and sex ratio -Ferris et al. 1984,
 Snyder et al. 2006
- No effect of nitrogen fertilization on nematodes development Spiegel et al. 1982

Joseph Penlap MacBiosCore seminar October 16-19, 2023 14 / 27

Plant-nematode model

RKN model:

Free
$$\begin{cases} \frac{dE}{dt} = \underbrace{rF}_{\text{Egg laying}} - \underbrace{hE}_{\text{Egg hatching}} - \underbrace{\mu_e E}_{\text{Mortality}} \\ \frac{dJ_2}{dt} = \underbrace{hE}_{\text{Egg hatching}} - \underbrace{\beta J_2 W_r}_{\text{Larvae infection}} - \underbrace{\mu_j J}_{\text{Mortality}} \end{cases}$$
Inside root
$$\begin{cases} \frac{dJ}{dt} = \underbrace{\beta J_2 W_r}_{\text{RKN entry}} - \underbrace{\eta J}_{\text{Maturation}} - \underbrace{\mu_j J}_{\text{Mortality}} \\ \frac{dF}{dt} = \underbrace{\eta J}_{\text{Maturation}} - \underbrace{\mu_F F}_{\text{Maturation}} \end{aligned}$$

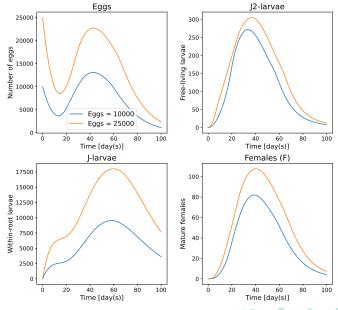
Plant roots:

$$\mathsf{Root} \left\{ \begin{array}{l} \frac{dW_r}{dt} = \underbrace{k_r f(\psi_r) \frac{C_r}{K_r + C_r} W_r}_{\mathsf{Growth}} - \underbrace{\gamma_r W_r}_{\mathsf{Natural senescence}} - \underbrace{\gamma_r \left(\frac{K_m^n}{K_m^n + C_r^n}\right) W_r}_{\mathsf{Additional drop due to carbon shortage}} \\ \frac{dC_r}{dt} = \underbrace{\frac{1}{W_r}}_{\mathsf{Transport}} \underbrace{T_r}_{\mathsf{Transport}} - \underbrace{(f_c + r_{g,r}) k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{\mathsf{Growth}} - \underbrace{r_{m,r} \left(\frac{C_r^n}{K_m^n + C_r^n}\right)}_{\mathsf{Maintenance respiration}} - \underbrace{c_{rh} \frac{1}{W_r^{(1-\beta)}} C_r}_{\mathsf{Rhizodeposition}} - \underbrace{\frac{dW_r}{dt} C_r}_{\mathsf{dilution}} \right\} \\ \end{array} \right.$$

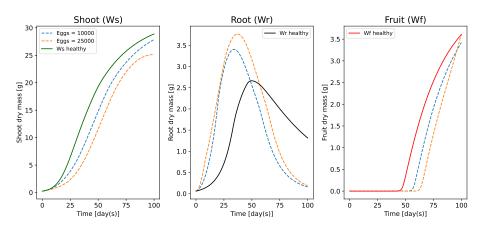
16 / 27

RKN model:

Free
$$\begin{cases} \frac{dE}{dt} = \underbrace{r(C_r) F}_{\text{Egg laying}} - \underbrace{h E}_{\text{Egg hatching}} - \underbrace{\mu_e E}_{\text{Mortality}} \\ \frac{dJ_2}{dt} = \underbrace{h E}_{\text{Egg hatching}} - \underbrace{\beta J_2 W_r}_{\text{Larvae infection}} - \underbrace{\mu_{J_2} J_2}_{\text{Mortality}} \end{cases}$$
Inside root
$$\begin{cases} \frac{dF}{dt} = \underbrace{\Omega(C_r) \beta J_2 W_r}_{\text{RKN entry}} - \underbrace{\eta J}_{\text{Maturation}} - \underbrace{(\mu_j + \mu_r) J}_{\text{Mortality}} \\ \frac{dF}{dt} = \underbrace{(1 - \theta(C_r)) \eta J}_{\text{Maturation}} - \underbrace{(\mu_F + \mu_r) F}_{\text{Mortality}} \end{cases}$$


Plant roots:

$$\mathsf{Root} \left\{ \begin{array}{l} \frac{dW_r}{dt} = \underbrace{k_r f(\psi_r) \frac{C_r}{K_r + C_r} W_r}_{\mathsf{Growth}} - \underbrace{\gamma_r W_r}_{\mathsf{Natural senescence}} - \underbrace{\gamma_r \left(\frac{K_m^n}{K_m^n + C_r^n}\right) W_r}_{\mathsf{Additional drop due to carbon shortage}} - \underbrace{\frac{\Omega(C_r) \epsilon \beta J_2}{\mathsf{Successfully infected roots}}}_{\mathsf{Successfully infected roots}} \\ \frac{dC_r}{dt} = \underbrace{\frac{1}{W_r}}_{\mathsf{Transport}} \underbrace{T_r}_{\mathsf{Crowth}} - \underbrace{(f_c + r_{g,r}) k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{\mathsf{Growth}} - \underbrace{r_{m,r} \left(\frac{C_r^n}{K_m^n + C_r^n}\right)}_{\mathsf{Maintenance respiration}} - \underbrace{c_{rh} \frac{1}{W_r^{(1-\beta)}} C_r}_{\mathsf{Rhizodeposition}} - \underbrace{\frac{1}{W_r} \frac{dW_r}{dt} C_r}_{\mathsf{Gluttion}} \\ - \underbrace{\gamma \frac{C_r}{C_r + K_\gamma} F}_{\mathsf{Dematode feeding}} F - \underbrace{\rho \Omega(C_r) \beta}_{\mathsf{Gall formation}} \underbrace{J_2}_{\mathsf{Gall formation}} \\ \underbrace{J_2}_{\mathsf{Nematode feeding}} \underbrace{J_2}_{\mathsf{Gall formation}} + \underbrace{J_2}_{\mathsf$$


 $\begin{array}{c} \mathsf{Plant} \to \mathsf{Nematodes} \ \mathsf{effects} \\ \mathsf{Nematodes} \to \mathsf{Plant} \ \mathsf{effects} \end{array}$

Joseph Penlap MacBiosCore seminar October 16-19, 2023 16 / 27

Preliminary Simulation plant-pest model

Preliminary Simulation plant-pest model

Model calibration

Calibration strategy

- Highly complex and non-linear model
- More than 30 parameters
- Few data available in literature

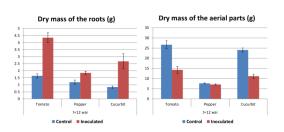
Calibration strategy

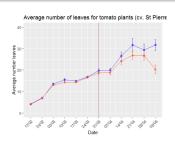
- Highly complex and non-linear model
- More than 30 parameters
- Few data available in literature
- Dedicated experiments
- 2-steps calibration strategy:
 - Calibration of the plant model on data from healthy plants
 - data processing
 - global sensitivity analysis
 - numerical estimation of sensitive parameters
 - Calibration of the plant-nematode model on data from infected plants
 - global sensitivity analysis: nematode parameters
 - numerical estimation of sensitive parameters

Plant model Calibration

- Dedicated experiments
- 2-step calibration strategy:
 - Calibration of the plant model on data from healthy plants
 - data processing
 - global sensitivity analysis
 - numerical estimation of sensitive parameters
 - Calibration of the plant-nematode model on data from infected plants
 - global sensitivity analysis: nematode parameters
 - numerical estimation of sensitive parameters

Work in progress!




October 16-19, 2023

ArchiNem project (INRAE 2020-21)

Experimental data available on 3 contrasted species (tomato, pepper, curcubit)

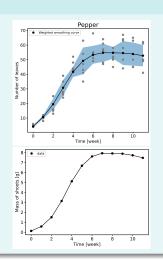
- Plant growth, physiology (healthy and infected)
 - Shoot, root, fruit dry mass (destructive): 3 time-points
 - Leaf number: 12 time-points
- 6 replicates per time-point

Collaboration with C. Caporalino (INRAE)

Data processing

Objective: increase the number of data points by exploiting non-destructive measurements (leaf number)

Allometric relation: shoot weight vs leaf number


- Spline smoothing of leaf data
 average dynamics
- Calibration of a general allometric relation (3 time-points x 3 species)

$$M = a_i L^b$$
, $i = \text{species } 1, 2, 3$

M = shoot dry mass, L = number of leaves

 \Downarrow

 Prediction of shoot dry mass from leaf data at 12 time-points

Multi-variate global sensitivity analysis

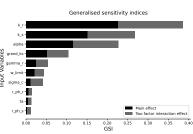
inputs : 26 parameters, reference value $\pm 30\%$

outputs: Shoot and root dry masses dynamics (vector)

 $\boldsymbol{method:} \ \mathsf{R} \ \mathtt{multisensi} \ \mathsf{package} \ (\mathsf{PCA-} \ \mathsf{and} \ \mathsf{ANOVA-based})$

Multi-variate global sensitivity analysis

inputs : 26 parameters, reference value $\pm 30\%$


outputs : Shoot and root dry masses dynamics (vector)

method: R multisensi package (PCA- and ANOVA-based)

Shoot growth

Generalised sensitivity indices k.s. grand_ks. ta sigma_c | wide sigma_c |

Root growth

8 sensitive parameters (1 parameter fixed from litterature data):

 k_s shoot growth rate

 k_r root growth rate

 σ_c shoot carbon fixation rate

 K_s shoot growth dynamics

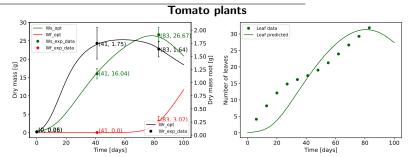
t_a active C transport to fruit

 γ_r root senescence rate

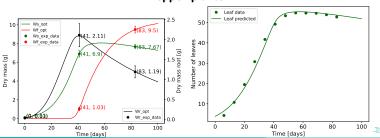
 α vascular architecture

w_{limit} water stress sensitivity

Numerical parameter estimation


- 1 calibration per species considered
- Estimation of 7 (sensitive) parameters
- Weighted (π) least-square function for real and reconstructed mass data:

$$\underbrace{\frac{\pi}{N_{i}} \sum_{i=1}^{N_{i}} \left(\frac{M_{sol}^{i} - M_{data}^{i}}{std^{i}} \right)^{2}}_{Dry \ mass \ data} + \underbrace{\frac{(1-\pi)}{N_{j}} \sum_{j=1}^{N_{j}} \left(\frac{M_{sol}^{j} - M_{pred}^{j}}{M_{pred}^{j}} \right)^{2}}_{Reconstructed \ data \ from \ leaf \ number}$$


2-step estimation strategy:

- Global search (differential evolution algorithm)
- Local search around solution of step 1 (least square)

Calibrated plant model

On-going work and perspectives

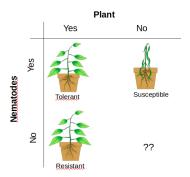
- Calibration of RKN-related parameters on data from infected plants
- Identification of key physiological and architectural traits underlying plant tolerance to RKN infestation
- Multi-seasonal² effect of plant tolerance: **crop rotations** (tolerant, susceptible and resistant plants), management practices, effect of environmental conditions...

Collaborators:

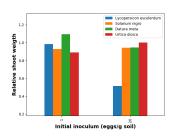
INRAE collegues:

- C. Caporalino
- L. Pagès
- C. Doussan

Master students


- T. Brenière
- N. Juazion-Graverolle
- C. Bourgade

- E. Ceci
- A. Canaud


Phenotypic variability

• Strong variations in the extent of damages within and among plant species

Aim

Better understand the mechanisms behind (differential) plant susceptibility to nematodes

- Resistance is efficient but
 - few resistant genes identified
 - only for a few species
 - may favour the emergence of virulent nematodes
- Interest for tolerance
- Several possible mechanisms reported
 - high root growth rate
 - better water and nutrients uptake
 - delayed senescence ...

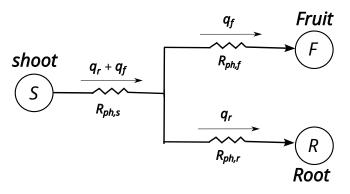
Resource transport resistances

Water transport

$$R_{sr} = r_{sr} \left(Wr + G \right)^{-\alpha_r} \tag{1}$$

$$R_{xy} = \frac{r_{xy}}{W_r^{\alpha_r}} + \frac{r_{xy}}{W_s^{\alpha s}} \tag{2}$$

Carbon transport


$$R_{ph} = \frac{r_{ph}}{W_s^{\alpha_s}} + \frac{r_{ph}}{(W_r + G)^{\alpha_r}}$$
 (3)

3/7

ph Penlap MacBiosCore seminar October 16-19, 2023

Carbon transport (T)

The carbon flow³ T in phloem vessels $T = q C_s$, with q the volume flow rate,

Therefore,

$$\begin{cases} (q_r + q_f)R_{ph,s} + q_r \ R_{ph,r} = (C_s - C_r) \\ (q_r + q_f)R_{ph,s} + q_f \ R_{ph,f} = (C_s - C_f) \end{cases}$$

$$\begin{cases} T_r = q_r C_s \\ T_f = \left(\frac{W_s^n}{I^n + W_s^n}\right) q_f C_s \end{cases}$$

◆□▶ ◆圖▶ ◆불▶ ◆불▶ 활발 虳♀♡

³Minchin et al., Journal of Experimental Botany, 1993

Male proportion

$$\theta(C_r) = \theta_{\text{max}} \frac{K_{\theta}}{C_r + K_{\theta}} \tag{4}$$

Reproduction rate

$$r(C_r) = r_{\min} + \frac{(r_{\max} - r_{\min}) C_r}{C_r + K_{repro}}$$
(5)

Establishment of the feeding site

$$\Omega(C_r) = \frac{Wcr^{\kappa}}{Wcr^{\kappa} + K_{\Omega}^{\kappa}}$$
 (6)

Global sensitivity analysis

Goal: Identifying the most influential parameters

inputs: 26 parameters, **outputs**: dry masses along time (vector)

Method

- fractional factorial design to explore parameter space
- PCA to reduce output and capture its variability
- ANOVA to compute sensitivity indices (SI)

$$SI_{..} = \frac{SS_{..}}{TSS}, \qquad GSI = \sum_{k=1}^{components} SI_k \times inertia_k$$

SS = sum of squares, TSS = total sum of squares

Joseph Penlap

Parameter set

TABLE 1 - Standard values for sensitivity analysis

Parameters	Description	Value	Interval
σ_C	Specific carbon fixation rate by the aerial part	0.4	± 30%
σ_W	Specific transpiration rate of aerial part	1.2	± 30%
$r_{ph,s}, r_{ph,r}, r_{ph,f}$	Xylem resistance coefficients to water flow	0.5, 0.5, 0.005	± 30%
$r_{xy,s}, r_{xy,r}, r_{xy,f}$	Phloem resistance coefficients to sap flow	5, 5, 0.1	± 30%
r_{sr}	Coefficient of resistance to water absorption by the roots	1	± 30%
k_s, k_r, k_f	Specific growth rates	0.14, 0.12, 0.6	± 30%
K_s, K_r, K_f	Half-saturation constants related to growth rate	0.1, 0.05, 0.01	± 30%
$\gamma_s, \gamma_r, \gamma_f,$	Mortality and leaf fall coefficients	0.1, 0.01, 0.001	± 30%
n, n_c, n_p, n_{hill}	Hill coefficients for transition, growth, photosynthesis and water regulation	10, 10, 10, 10	± 30%
W_{limit}	Transition coefficient from vegetative to reproductive phase	15	± 30%
K_c, K_p	Half-saturation constants related to the effect of water on growth and photosynthesis	-1400, -1600	3 fixed values
$\alpha_s, \alpha_r, \alpha_f$	Allometric coefficients	2/3, 2/3, 2/3	± 30%
$r_{s,m}, r_{r,m}, r_{f,m}$	Maintenance respiration coefficients for aerial, root and fruit compartments	0.001, 0.001, 0.001	± 30%
$r_{s,g}, r_{\tau,g}, r_{f,g}$	Growth respiration coefficients of aerial, root and fruit compartments	0.01, 0.01, 0.01	± 30%
c_{rh}	Rhizodeposition coefficient	0.1	± 30%
ta	concentration rate of carbon related to active transport	0.5	± 30%

- 26 parameters
- 3 levels for each parameter (reference value and ±30% of reference value)
- some reference values from literature