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ABSTRACT. Our aim in this paper is to provide a detailed proof to the existence of the
corrector, based on the existence of the local weak solutions to linear problems. We find in

the Sobolev type space Wil’ic(Rd) the solution of a second order linear partial differential

equation in divergence form. The obtained result constitutes an important step towards
the numerical implementation of the results from the deterministic homogenization theory
beyond the periodic setting.

1. INTRODUCTION AND MAIN RESULT

The main objective of this current work is to solve in the sense of distributions a linear
partial differential equation of the second order in divergence form. We provide an existence
and uniqueness result of the weak solution by means of the Caccioppoli’s Inequality specific
to our problem in the Sobolev type space WJI’OQC(Rd) that is locally uniformly bounded energy
function spaces.

The problem is stated as follows:

—div(AVu) 4+ u = f +divF  in RY (1.1)
where R? (integer d > 1) is the space of real numbers, the operator V stands for the
0

_ , div denotes the divergence operator with respect to
0% ) 1<i<d

the variable . The unknown is the function u and the coefficients in (1.1) are constrained
as follows:
(A1) A e L=(R%)%? is a symmetric matrix verifying o |A|* < A(z)A - X < §|A|]* for every
(r,\) € R? x R? o and 3 are two positive real numbers.
(A2) fel? (RY and F € L%, (R%)%

uloc uloc

usual gradient, i.e. V =

The following theorem is the main result of the work.
Theorem 1.1. Assume that (A1)-(A2) hold. There exists an unique function u € W52 (R%)

uloc
solution of (1.1). Furthermore, the solution u satisfies the following uniform estimate:

Sup][ (IVul? + [uf?) < © sup][ (P + FP) . (1.2)
B, (2) B, (z)

z€R4 z€R4
where C'= C(r,d,a, ) > 0, B,(z) = B(z,r) denotes the open ball centered at z with radius
r, and = =1 ) )
’ Br(z) |Br(z)] JBr(2)
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Theorem 1.1 above establishes the existence of a distributional corrector and can be quite
useful in the deterministic homogenization theory for a family of second order elliptic equa-
tions in divergence form with rapidly oscillating coefficients. It can enable us to easily find
an approximate scheme for the homogenized coefficients, without smoothness assumption on
the coefficients, which is a crucial step towards the numerical implementation of our results.
Under additional condition, thanks once again to Theorem 1.1, we can also study the con-
vergence rates in the asymptotic almost periodic setting. It is worth noticing that solving
problem (1.1) in the sense of distributions lays the foundation to the study of regularity
results in the general deterministic setting beyond the periodic framework. Thanks to the
Caccioppoli inequality, we explicitly proved the important estimate (1.2), which is sharp
compared to its counterpart in [22].

The rest of the paper is organized as follows. In Section 2, we present some preliminaries
and we state some functional spaces. Section 3 is devoted to the proof of the main result by
using some important estimates, thanks to Caciopolli Inequality.

2. SOME FUNCTIONAL SPACES

Let us recall that by LP, (R%) (1 < p < co) is meant the subspace of L (R?) of those

uloc loc
functions v such that
sup / lul” dy < oo
z€R? J B(x,1)

where B(z,1) is the unit ball in R? centered at . Equipped with the norm

1
P
ol oy =sup ([ ) 1)
uroe z€RY B(z,1)

LP, (R?) is a Banach space. The Sobolev type space L?, (R?) is actually the Wiener amal-
gam space (LP, (>°)(R?) introduced by Wiener [24]; see also [3, 11].

The norm (2.1) can be replaced by any of the following equivalent ones:

1 1
p p
ullp  (gay = sup (/ |ul? dy) A sup </ wy —0OF [u(y)l” dy) : (2.2)
wroe Lezd £4(0,1) Lez4 R4

where ¢ is any nonnegative function in C§°(R%) such that >, . ¢(y — k) > ¢o > 0 for all
y € R%. We also set LS, (R?) = L°(RY).

With the identification L3 (R?) = (LP, £>)(R?), we see that the properties of L%, (R?)

uloc uloc
are now well known: see e.g. [3, Sections 6-7]. Let us recall one of its important properties

that will be used in the sequel.
Lemma 2.1. Let f € L'(R?) and g € L?,, (R?) (1 <p < o00). Then fxge LP, (RY) and

uloc uloc

| f * QHLZM(RCI) < HfHLl(Rd) ||g||Lﬁloc(Rd) ’ (2.3)
where C' = C(d,p) > 0.

Proof. Since f € L*(R?%), it can be approximated by functions with compact support.
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So f * g will be well defined by

(fxg)(t) = g ft—y)g(y)dy

one will show that (2.3) is satisfied. However (2.3) has been shown in [3, Section 7] and in
[15, Chap 14, Sect. 14.1]. We repeat the proof for reader’s convenience. To this end, we

define fi(k € Z29) by fi. = flesye- Then 37, s ||fk||L1(]Rd) = ”f”Ll(Rd) and

[ el < Ul [ oy
z+(0,1)¢ x—k+(0,4)%

Let (7;)1<i<as C R? be such that B(0,4) C UL, (z; + (0,1)7) . Then

49
[ erasd | oPdy< 4w [ jgPay,
x—k+(0,4)% i—1 Jr—z+z;+(0,1)4 r€R? J z+(0,1)4

so that
d
1f*gller @iy < Z k% gllp ey <47 <Z ||fk||L1(Rd)> lglle, (e
kezd kezd
d
< A2 | fll g ey 91l (may
This completes the proof. O

We may also define the Sobolev type space WP (R?) accordingly.

uloc

Wil (RN ={ue I, (RY) : Vu € ¥, (RY)'}

uloc uloc

a Banach space with the norm

=

P
HuHWiifc(Rd) - |:Hu”izloc(Rd) + Hvuuizlo(‘([@d)}

3. PROOF OF THE MAIN RESULT (THEOREM 1.1)

We first need the Caccioppoli Inequality formulated as follows:

Theorem 3.1. (Caccioppoli’s Inequality)
Let u be the solution of (1.1). Then there exists a constant C' > 0 (depending only on o, [
and d) such that

sup][ " (|Vu|2 + |u|2) < C + C sup][ o (|f|2 + |F|2) (3.1)
B (x B (x

z€R4 zcR4
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Proof. Let n € C§°(Ba,(z)) be a regularising and truncated function such that n = 1 in
B.(z),0<np<1and |Vn| <C r~'. Taking un* as the test function in (1.1), we have

/ " AVu - Vu + / nu® = —2/ nuAVu - Vn — 2/ nukF - Vn
Bar(x) Bar(z) Bay(x) Bar ()

Bar(z) Bay(z)

:Il+[2+13+14-
The left-hand side of the above equality can be approximated by:

o / 7 [Vl + / 72 ful?.
Bay () B,

For the right-hand side, we use Young’s Inequality and the properties of the operator A.

(07
< S e [ et
Bay () Bay ()

L <C / 2|2+ C / f? V2,
Bor(z) Bar(z)
[0
n<§ [ dwetee [ e,
Bar(x) Bay ()

1 1
<y [l [ it
2 JBoy(a) 2 JB,,
Finally, (3.2) becomes:

C
[oawersty e [ qeltap® e G [ wlrec [ g ipp.
B (z) Bar () r Bay(2) Bor ()

From [12, Lemma 0.5], we infer that there exists a constant C' = C(«, 3, d) such that
C
[oawet ey < [l [ st ie (33)
B (z) r Bay () Bar(z)
which implies
C
Foavel el < e f e, (3.9
By (z) 7" JBar(x) Bar(x)

Next, by substituting sup in (3.4) and using the following inequality
z€R4

sup][ Wl < C(d) sup][ WP, W e L2, (RY),
z€RLJS Ba,(z) z€RLJ By ()

it comes that

C
sup ][ (Va2 + [uf2) < < sup ][ ul? +C sup ][ U2+ 1FP).  (35)
Br(x) r Br(z) Br(x)

zc€Rd z€R4 zcRd
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In (3.5), we observe that if r > +/2C, then the estimate (3.1) is satisfied. The case 1 <r <
Vv 2C' is obtained from the case r = 1.

Proof. Proof of Theorem 1.1

(1) Existence.
Let r > 0 be fixed and v, € W,*(B,) the unique solution of

—div(AVv,) + v, = f+divF in B, = B(0,7).

By adding the condition v, = 0 on dB,, we can prove that (v,), € W,2*(R?). Let
us show that the sequence (v,), is bounded in W,o*(R%). We proceed exactly as in
[11]. For the variational formulation of the above equation, we choose n?v, as test
function, where 1, = exp(—c|z|), for z € R? freely fixed and ¢ > 0 arbitrarily chosen.
We get

—/ diV(Aer)nzver/ v, = fngvr+/ divEn?v,
T a B’f‘ T

O

/ AV, Y (120,) + / 2o? = / o+ [ HN (P
r 4 T BT

/ ngAer.er—i—/ ngvf = —2/ nZUTAer-V'r]Z—Q/ n.v.H.Vn,
B, B, B, B,

- an.er%—/ hn?v,

Br
= L+ L+ 13+ 1,

The left-hand side of the above equality is bounded by:

a/ 773|VUT|2+/ n2v2.
B B

For the right-hand side, the Young inequality and the properties of the operator A
give rise to the ensuing estimates.

L] = —2/ n.v,.Av, - Vn,

1 k
< —/ v? | V.| + 6/ n? A% |Vo,|” for e=—
€ JB, g

«
(0%
I A
B -
of
rzzr<7/ A /niw
<_ 2

afc? k
I, < 2,2 / 2 2
[l < — /Brvmﬁmﬁcz LT 1f17,
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where k > 0 is arbitrarily chosen . Note that |Vn,| = en..
Thus, we have:

k
e e S G A

1

Next, for k = and c= % (%) we have the following estimation:

2 1 2
a/&n,z|v@r\ o[ [ Gt (Ge) e e

Inequality (3.6) shows that the sequence (v,) is bounded in W,>*(R%). Indeed, for
any compact K C R% the left-hand side of Inequality (3.6) is bounded by

Ck (a/ ]er|2+/ vf),

where Cx = ming 72 > 0, while the right-hand side is approximated by C [;,n?

where 3
«Q 2
C= (5 +5) 1FI, + 5171,

Hence, there exists an unique sub-sequence (v,) and a function v € W.?(R%) such

that the above-mentioned sub-sequence weakly converges to v in W ?(R%). This
means that

v, = v in WEARY) — weak.

loc

Note that v is a weak solution of (1.1) in R¢. By introducing the limit lim inf in
r—00
(3.6), we get:

a | Vol + | vl < 17+ —|F| (3.7)
ftiwnt s [ s [t (G L) o

Thus, we deduce from (3.7) that:

sup][ (Vo2 + o) < C. (3.9)
2€R4J B,.(2)

where fBT(z) = m / 5.z and C does not depend on z. For r > 1, according to the
Caccioppoli inequality, we have:

C
fombef < |W|2+c{][ 7+ f w}, (39)
(2) (2) T%J By, (2) Br(2) Br(2)

for any z € R¢, where C depends only of d, o and 3. Next, we have

sup][ w)* < Cy sup][ v]?. (3.10)
z€R4J Bo, rcRd

Thus,

sup + |Vol> +sup £ [ < Cr2 sup 4 |+ C {sup][ (fI* + \F|2)}

z€RYJ B, z€RYJ B, z€RYJ B, zER4
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Ultimately, if » > (2C)z, then (1.2) holds. The case r = 1 stems from [14].

(2) Uniqueness.
Proving the uniqueness of the solution amounts to considering (1.1) with f = 0 and
F = 0. That is to say

—div(AVv) +v =0 inR?

According to the Caccioppoli Inequality, we have:

C
/ IVv|2+/ of* < —2/ Else (3.11)
Br(2) Br(2) 7" J B (2)

For r > 1. It stems from (3.11) :

c
/ wl? < —2/ ol (3.12)
B(2) T JBar(2)

However, by virtue of (3.10) and (3.8), we have

/ v|* < C.
Bar(2)

/ W< Cr?  forr>1. (3.13)
By (z)

Hence, (3.12) becomes

Thus, by making r — +00, we get v = 0 on R%.
OJ

It is worth noticing that the weak solution v of (1.1) given by the theorem 1.1 satisfies

1

» 2 »
sup (][ |Vv|p) < C sup (][ |f|2> +C sup <][ |F|p) (3.14)
z€R? \J B(z,1) z€R® \J B(z,1) zeR? \J B(z,1)

1

7 2 v
sup (][ |Vv|q) < C sup (][ |f|2) + C sup <][ |F|p) (3.15)
z€R? \J B(z,1) zeR? \J B(z,1) z€R? \J B(z,1)

for all p > 2, C' depends only of d, a and [, where % = i — Oll pour d > 3. If d = 2, the
left-hand side of (3.15) can be replaced by ||v]| ;.
To have (3.14), we use the inverse estimation of Holder [12]: if v is a weak solution of
—div(AVv) = f +divF in B, = B(z,r) then,

1 1 1

() < (L oe) e (£ ) e (£ )

for all p > 2, C' depends only of d, a and f.
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