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Introduction

Forests are part of the more or less complex ecosystems of the planet
because they are full of organisms of small and large scales, namely trees,
animals, and bacteria.

To understand the functioning of forest ecosystems, it is useful to focus on
the influence of certain factors in the forest environment. We refer to the
impact of climate change, water resources, and deforestation.
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Introduction

Motivations
Scientists, specifically biologists, do not easily distinguish tree categories in
the field based on their density.

Objective
In this work, we aim to adapt the mathematical model proposed by Cantin
et al [1] based on a reaction-diffusion-advection system by taking into
account the effects of atmospheric activity and water resources.
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Background

• A survey about the management of the forests [3],
• The impact of climate change and some extreme events on the forest.

Antonovsky et al [2] introduced a simple model of age structure dynamics
of the monospecies system, and in 2021 Cantin et al [1] proposed a novel
age model to study the dynamics of a forest ecosystems.
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Problem statement

Biocore seminar Modeling the dynamics of a forest environment: role of water cycleJanuary 1, 2023 5 / 36



Problem statement

It is described by the following reaction-diffusion advection system of four
partial differential equations.

a.∇ρ(t, x) = −σρ+ ϕ(ρ)v ,

∂u

∂t
(t, x) = βδω − γ(v , ρ)u − fu,

∂v

∂t
(t, x) = fu − h(ρ)v ,

∂ω

∂t
(t, x) = d∆ω − βω + α(ρ)v ,

(1)
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Problem statement

Antonovsky et al assumed that the overall tree mortality rate γ(v , ρ)
can be defined as

γ(v , ρ) = γ0(v) + µ(ρ). (2)

Here, the function γ0(v) refers to the competition between young and old
trees. It is defined by a quadratic form:

γ0(v) = r(v − b)2 + c . (3)

The competition term γ0 is highlighted by considering life resources (water,
light).
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Problem statement

Figure 1 : Illustration of tree competition.
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Abstract forest

Figure 2 : Geographic representation of a forest area [1].

Next, we considered that the oceanic littoral Γ is defined by:

Γ = {x ∈ R, a(x).ν(x) < 0} .
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Unstructured age model

Figure 3 : A compartmental model of our forest ecosystem.
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Model formulation

Next, we have:



a.∇ρ(t, x) = −σρ+ ϕ(ρ)u,

∂u

∂t
(t, x) = βδω − γ(ρ)u,

∂ω

∂t
(t, x) = d∆ω − βω + α(ρ)u.

(4)

In this case, γ(ρ) represents the overall tree mortality and it is described
by:

γ(ρ) = k + h(ρ), (5)
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Model formulation

Conditions on system (4)
Neumann boundary and initial conditions associated to system (4) are
given as follows:

ρ(t, x) = m(x), t > 0, x ∈ Γ,

∂ω

∂ν
(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), ω(0, x) = ω0(x), x ∈ Ω.

(6)
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Model reduction

Here, we aim to parametrize the advection equation to reduce the
system (4) into a reaction-diffusion system.

For that, we introduce and show the well-posedness of the following
operator:

ψ : L∞+ (Ω) −→ L∞+ (Ω),

u 7−→ ρ.
(7)

where ρ = ψ(u) is the solution of advection equation.
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Model reduction

Theorem
For x ∈ Ω almost everywhere (a.e) and u ∈ L∞+ (Ω), the defined operator ψ
in (7) exists and it is uniquely determined along the characteristic lines of
the advection field a by:

ψ(u)(x) = m(ζ1(x))e−σζ2(x) +

∫ ζ2

0
ϕ (ρ̃(ζ1(x), τ)) ũ(ζ1(x), τ)e−σ(ζ2(x)−τ),

(8)

where (x0, s) = (ζ1(x), ζ2(x)). Furthermore, the operator ψ is continuous
in L∞+ (Ω) and we have:

‖ψ(u + h)− ψ(u)‖ ≤ ‖h‖∞ ×
ϕ0

σ
eϕ0S̄‖u‖∞ , ∀ u, h ∈ L∞+ (Ω). (9)
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Model reduction

According to theorem above, system (4) becomes:



∂u

∂t
(t, x) = βδω − γ(ψ(u))u, t > 0, x ∈ Ω,

∂ω

∂t
(t, x) = d∆ω − βω + α(ψ(u))u, t > 0, x ∈ Ω,

∂ω

∂ν
(t, x) = 0, t > 0, x ∈ ∂Ω,

(10)

where ψ(u) models the dependence of water resource in the tree life
process.
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Model reduction

System (10) can be written as follows:


∂u

∂t

∂ω

∂t

+

(
1 0
0 Λ

)(
u
ω

)
=

βδω − γ(ψ(u))u + u

α(ψ(u))u

 , (11)
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Model reduction

We now have an abstract Cauchy Problem


dU

dt
+ AU = F (U), t > 0,

U(0) = U0, U0 ∈ Z,
(12)

where Λ = −d∆ + β a linear operator in L2(Ω), A = diag(1,Λ), and

U = (u, ω)t ∈ D(Aη), F (U) =

[
βδω − γ(ψ(u))u + u

α(ψ(u))u

]
.
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Model analysis

Theorem
For any initial condition U0 ∈ Z, the Cauchy problem (12) possesses a
unique local solution in time U = (u, ω)t defined on Y = [0,TU0 ] with

{
u ∈ C (Y , L∞(Ω)) ∩ C1 ((0,TU0 ], L∞(Ω)) ,

ω ∈ C ((0,TU0 ],D(Λ)) ∩ C
(
Y , L2(Ω)

)
∩ C1 ((0,TU0 ], L2(Ω)

)
,

(13)

where TU0 = Cte(‖U0‖X ) > 0. Furthermore, the local solution U satisfies

t ‖AU(t)‖X + ‖U(t)‖X ≤ TU0 , 0 < t ≤ TU0 . (14)
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Model analysis

Theorem
Let 0 ≤ u0 ∈ L∞(Ω) and 0 ≤ ω0 ∈ L2(Ω). System (10) admits a unique
non-negative local solution such that:

{
0 ≤ u ∈ C (Y , L∞(Ω)) ∩ C1 ((0,TU0 ], L∞(Ω)) ,

0 ≤ ω ∈ C ((0,TU0 ],D(Λ)) ∩ C
(
Y , L2(Ω)

)
∩ C1 ((0,TU0 ], L2(Ω)

)
,

(15)
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Non-negativity of the solution

Hint for the proof
We introduced the following cut-off function ϑ defined by:

ϑ(û) =

{
û if û ≥ 0,
0 if û < 0.

and ϑ(ω̂) =

{
ω̂ if ω̂ ≥ 0,
0 if ω̂ < 0.

(16)
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Global solutions

Let 0 ≤ u0 ∈ L∞(Ω), 0 ≤ ω0 ∈ L2(Ω), η > 0, and 0 < t ≤ TU0 . Under
Caratheodory properties, since the local solution U = (ρ, u, ω)t of (4) in
the function space

{
0 ≤ ρ, u ∈ C (Y , L∞(Ω)) ∩ C1 ((0,TU0 ], L∞(Ω)) ,

0 ≤ ω ∈ C ((0,TU0 ],D(Λ)) ∩ C
(
Y , L2(Ω)

)
∩ C1 ((0,TU0 ], L2(Ω)

)
.

satisfies (14). More precisely, the following estimate is satisfied

‖u(t)‖L∞(Ω) + ‖ω(t)‖L2(Ω) ≤ C
[
e−tη

(
‖u0‖L∞(Ω) + ‖ω0‖L2(Ω)

)]
. (17)

Then, the reaction-diffusion advection system (4) admits a unique global
solution U = (ρ, u, ω)t .
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Stability analysis
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Estimated functions

α(ρ) =
α0ρ

1 + ρ
, ϕ(ρ) =

ϕ0ρ

1 + ρ
, h(ρ) =

h0 + h1ρ

1 + ρ
. (18)
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Stability analysis

Let Ū = (ρ̄, ū, ω̄)t a stationary solution of system (4). We have



ρ̄ = m(x),

a.∇ρ̄ = −σρ̄+ ϕ(ρ̄)ū,

∂ū

∂t
= βδω̄ − γ(ρ̄)ū,

∂ω̄

∂t
= d∆ω̄ − βω̄ + α(ρ̄)ū.

(19)
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Stability analysis

1. Oceanic contribution is vanishing (m(x)=0). We have:


ρ̄ = 0,

ϕ(0)ū = 0,
βδω̄ = γ(0)ū,

βω̄ = α(0)ū.

(20)

Hence, ū = 0, and also ω̄ = 0. Thus, the trivial solution
Ū = (ρ̄, ū, ω̄) = (0, 0, 0) is a unique stationary homogeneous solution
of system (4).
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Stability analysis

Proposition
Let us assume that the regular function is vanishing (i.e. ρ = m(x) = 0),
for all x ∈ Γ, then system (4) possesses a unique stationary homogeneous
solution Ū = (ρ̄, ū, ω̄) = (0, 0, 0).
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Stability analysis

2. Oceanic contribution is not vanishing (m(x) > 0). We have:


ρ̄ = m̄,

σm̄ = ϕ(m̄)ū,

βδω̄ = γ(m̄)ū,

βω̄ = α(m̄)ū.

(21)

After solving the latter system, we get:

ū =
σm̄

ϕ(m̄)
, and ω̄ =

α(m̄)

β
ū. (22)
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Stability analysis

Since

α(ρ) =
α0ρ

1 + ρ
, ϕ(ρ) =

ϕ0ρ

1 + ρ
, h(ρ) =

h0 + h1ρ

1 + ρ
.

We finally get:

ρ̄ = m̄, ū =
σ

ϕ0
(1 + m̄), ω̄ =

α0

β

σ

ϕ0
m̄. (23)
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Stability analysis

Solutions are constant in time but not necessarily uniform in space, in case
of heterogeneous solutions.

Let U(t, x) = U(x) = (ρ(x), u(x), ω(x)) be a solution which holds the
following system:

ρ = m(x), x ∈ Γ,

a.∇ρ = −σρ+ ϕ(ρ)u, x ∈ Ω,

∂u

∂t
= βδω − γ(ρ)u, x ∈ Ω,

∂ω

∂t
= d∆ω − βω + α(ρ)u, x ∈ Ω,

∂ω

∂ν
(x) = 0, x ∈ ∂Ω.

(24)
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Stability analysis

Stationary heterogeneous solution
For (u, ω) = (0, 0), system (24) admits one solution U = (ρ, 0, 0) satisfying
the stationary advection system and the expression of ρ(x) is explicitly
given by:

ρ(x) = m(x0)e−sσ, (x0, s) = (ζ1(x), ζ2(x)), x = ξ(x0, s) ∈ Ω.
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Discussions

Figure 4 : Case of the non-existence of forest. It refers to the stationary
homogeneous state (0, 0, 0) of system (4).
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Discussions

Figure 5 : (ρ(x), 0, 0) after t = 0.
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Discussions

Figure 6 : (ρ(x), 0, 0) after t = 20 years.

Biocore seminar Modeling the dynamics of a forest environment: role of water cycleJanuary 1, 2023 33 / 36



Conclusion & future plans

• We adapted the model proposed by Cantin et al.

• We highlighted the major impacts of some parameters in the forest
dynamic.

• "Our model is well fitted".
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Thank you

For

Listening.
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